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 Econometrica, Vol. 47, No. 5 (September, 1979)

 GENERAL CONDITIONS FOR GLOBAL INTRANSITIVITIES IN

 FORMAL VOTING MODELS'

 BY RICHARD D. McKELVEY

 This paper proves that for majority voting over multidimensional alternative spaces, the
 majority rule intransitivities can generally be expected to extend to the whole alternative
 space in such a way that virtually all points are in the same cycle set. In other words, given
 almost any two points in the alternative space, it is possible to construct a majority path
 which starts at the first, and ends at the second. It is shown that for the intransitivities not to
 extend to the whole space in this manner, extremely restrictive conditions must be met on
 the frontier (or boundary) of the cycle set. Similar results are shown to hold for any social
 choice rule derived from a strong simple game. These results hold under fairly weak
 assumptions on individual preferences: individuals need only have continuous utility
 representations of their preferences such that no two individuals' preferences coincide
 locally. The results seem to rule out the possibility, at least in models of interest to
 economists, of using the transitive closure of the majority relation as a useful social choice
 function. They also imply that under any social choice rule meeting the conditions assumed
 here, it is generally possible to design agendas based on binary procedures which will arrive
 at virtually any point in the alternative space, even Pareto dominated points.

 1. INTRODUCTION

 SINCE ARROW'S [1] PIONEERING WORK in the area, it has been known that for

 most social choice mechanisms, situations can arise in which the social ordering is

 intransitive even though all individuals hold transitive preferences. However,

 Arrow's theorem only tells us that there is some profile of individual preferences

 which can yield an intransitive social ordering. It does not tell us the likelihood

 with which we can expect such a situation to arise. Nor does it tell us the

 seriousness, or the extent of the intransitivities when they do occur. This paper
 deals with the above questions in the context of a particular class of social choice
 rules, namely those based on strong simple games, where the alternatives are a

 subset of a multidimensional space. Particular attention is given to the special case
 of majority rule. For such situations it is shown that not only will intransitivities

 usually arise, but also, the intransitivities will generally be global, so that all points
 in the space are members of the same cycle set.

 The question of the likelihood with which intransitivities arise has already

 received a considerable amount of attention, especially for the case of majority
 rule. In fact, in multidimensional models of voting, our concern here, the

 conditions necessary just to guarantee transitivity at the top of the social ordering
 have been shown to be so severe that one would seldom expect them to be met in
 practice. Plott [17] has shown if all voters have continuous, differentiable utility
 representations of their preferences, that a necessary condition for the existence

 of a core point (i.e., a point that is undefeated under the majority relation) is that a
 very strong symmetry condition on individual gradient vectors be met. The

 condition is so strong that even if it were met, a minor perturbation of any one

 I This research was supported, in part, by the National Science Foundation, Grant # SOC77-
 08291. I am indebted to Norman Schofield for some conversations in the early stages of this research
 which influenced my thinking on the problem, and to Rodney Gretlein for comments on an earlier
 draft. In addition to the literature cited in the text, the interested reader shiould also see recent articles
 by Cohen and Matthews [4] and Schofield [21], which were written subsequent to this article, and
 extend some of the results of Section 4 of this paper.
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 1086 R. D. McKELVEY

 voter's preferences would cause it to be violated. See Sloss [23], Davis, De Groot,
 and Hinich [5], and McKelvey and Wendell [14] for other versions of this result,
 and Matthews [12] and Slutsky [24] for extensions beyond simple majority rule.
 The generic nonexistence of a core also has been proven by Rubinstein [19] for the

 case when only continuity of preferences is assumed. Thus, existence of a core
 would seem to be a rare event. Further, transitivity at the top of the social ordering
 (i.e., existence of a core) does not guarantee anything about the rest of the social
 ordering. One is forced to conclude that the likelihood of obtaining a completely
 transitive social ordering in the case of majority rule would be extremely remote.
 Work of Kramer [10] and Schofield [20] on conditions for local transitivity
 reinforces this conclusion.

 Although the difficulty of guaranteeing transitivity in multidimensional voting
 models is well known, it is not well understood how these intransitivities behave
 when transitivity breaks down. Thus, the question of the extent, or severity of the
 intransitivities is relatively unexplored. A substantial body of literature has
 developed recently under the implicit assumption that the intransitivities are fairly
 well behaved. This literature defines a derived social choice rule, called the
 transitive closure, which ranks two alternatives as socially indifferent if there is a
 cycle of which they both are members, and ranks x better than y if there is a finite
 path from y to x but not back. This effectively partitions the alternative space into
 "cycle sets," which are ordered transitively. The "top cycle set" is then of
 particular interest from both a normative and a descriptive point of view, the idea
 being that once alternatives in this set are proposed, society should not (or will
 not) then move to an alternative outside of the set. A review of this literature
 appears in Sen [22].

 The usefulness of the above approach is of course dependent on the intran-
 sitivities in the social order being fairly limited in scope. Some recent research
 suggests that this hope may be unfounded. In a previous paper, I [13] have shown,
 in a model which assumes "Euclidian" preferences (i.e., preferences based on
 Euclidian distance from an individual ideal point), that when transitivity breaks

 down at all, it breaks down completely, so that all points in the policy space, X, are

 in the same cycle set. By this, it is meant that for any xo, yo E X, it is possible to find
 a sequence Oo, . . OK c X, with 6o = xo, OK = yo, such that O9+1 is preferred to 0i by
 a majority for 1 i - K -1. Thus, it is possible to find a majority rule path
 between any two points in the space. Recently, Cohen [3], using methods of proof
 quite similar to those used in this paper, has shown that the result extends to the
 case when preferences are "elliptical," and has also shown uniqueness of the top
 cycle set for general convex preferences. The assumption of Euclidian, or even
 elliptical preferences is clearly quite restrictive. However, Schofield [20], using a
 very different approach, has shown a similar result in a model requiring only that
 preferences be continuous and differentiable. He shows that there usually exists a
 continuous majority rule path between any two points in the policy space. But
 Schofield has only shown this result for the case when the number of policy
 dimensions is large in relation to the number of voters. (He requires m ? q + 1,
 where m is the dimensionality of the policy space, and q is the number of voters in
 a minimal winning coalition.)
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 VOTING MODELS 1087

 In this paper, it is shown that if the paths are not restricted to be continuous the

 above result extends to a very general model which places no restrictions on m.

 We assume only that voters have continuous utility representations of their

 preferences such that no two voters' preferences coincide locally. It is then shown

 that except under very restrictive conditions on individual preferences, global

 intransitivities will prevail. The conditions are such that if the alternative space, X,

 is any connected subset of R2, one would usually expect them to fail, unless

 preferences are more or less linear over some region of X. If X is any connected

 subset of R r, with m > 2, one would virtually always expect the conditions to fail,

 regardless of the nature of individual preferences. In fact, for X c Rm, with m > 2,
 the conditions generally fail so badly that not only is there a majority path between

 any two points, but that path can be chosen in such a way that it is arbitrarily close

 to any pre-selected curve connecting the two points.

 The above describes the situation for majority rule. We also look at the general

 class of social choice functions generated by strong simple games. The results are

 more difficult to interpret here. Although they seem somewhat less pessimistic
 than those for majority rule, they appear to be similar in spirit to those described

 above: Namely, unless there is one strong player, or a fortunate distribution of

 preferences, we would expect global intransitivities here too.

 These results imply that for social choice rules meeting the conditions required

 here, the transitive closure would not in general be useful as a social choice

 function, since it would rank all alternatives as socially indifferent. The results also
 imply that in most cases social choice rules of the sort studied here would be

 subject to manipulation by anyone in control of the agenda. A clever agenda

 setter, with knowledge of all voter's preferences could design an agenda to reach

 virtually any point in the alternative space.

 The rest of the paper is organized into four sections. The following section

 (Section 2) begins by giving notation and definitions. We define the set P>(x) as
 the set of points that are "reachable" from a point x via the social relation. Section

 3 then presents the main theorem, which proves that in order for P*(x) not to be
 the whole space, extremely restrictive conditions must be met on the "frontier"
 (or boundary) of P*(x). Section 4 interprets the results of Section 3 when utility
 functions are differentiable, and majority rule is in effect. It is proven that the main

 theorem then implies that for P* (x) not to be the whole space, an extremely strong

 symmetry condition on the gradients of individual utility functions must be met at

 all points on the boundary of P*(x). From this result one can see that the
 conditions would virtually always fail in any space of dimensionality greater than

 two. It also follows from this that the path can generally be chosen to follow any

 route desired. The final section discusses implications of these results, and gives

 some concluding remarks. The Appendix contains statements and proofs of a

 series of Lemmas used in the paper.

 2. NOTATION AND DEFINITIONS

 We assume a set of voters, N = {1, 2, . . , n}, an alternative space X, which can
 be any topological space, although for illustrations we will assume X c R ", and
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 1088 R. D. McKELVEY

 we let 0 denote the set of binary relations over X. For each i E N, we let &i c 0, be
 the set of possible preference relations for voter i and we set & = fliEN&i to be the

 set of preference profiles over X. Elements of & are written R = (R1, . .. , Rrl),
 '= (R,... ,R'), etc. For any binary relation R e 0, we define two derived

 relations P, I e & by xPy K= (xRy and -yRx), and xIy -# (xRy and yRx).
 Thus, for any Ri E &i, the associated relations are written Pi, Ii. For convenience,
 we will also define a relation Q by xQy = yPx, with similar definitions of Qi for
 individual voters.

 A social welfare function is any function f: & --* 0, which associates with each

 preference profile R 0 6, a relation R = f (R) = f(R 1, . . . , Rn) E R. In this paper,
 we will consider only a special class of social welfare functions, namely those

 which are generated from strong simple games. To formalize this, any C c N is

 called a coalition, with IC| denoting the number of members of C. For any C c N,
 and x, y e X, we write xPcy,~ xPiy for all i E C. We let W c 2N be any set of
 coalitions satisfying the following properties:

 (2.1a) (Monotonicity) If C c C', and C c W, then C'c W.

 (2.lb) (Strong and Proper) Cc W<-, N-C. W.

 Given any set of coalitions, W, satisfying (a) and (b) above, we can define a social

 welfare function Rw = fw(R) as follows: For any x, y C X,

 (2.2) xPry xPcy for some C c W,

 xRwy - (yPwx).

 The class of social welfare functions so generated (i.e., generated by a set of

 coalitions W satisfying (a) and (b)) will be denoted 3$. Henceforth, we will only be
 concerned with social welfare functions in i. (In general, we will drop the

 subscripts on R", and Pw, writing R and P for the social relations.) Note that if n is
 odd, majority rule is in 3;, where majority rule is defined by setting W = M =

 {C c NJI C > n/2}. If n is even, then majority rule does not satisfy property 2.
 However, modifications of majority rule, which break ties using a chairman's
 preference, would be in ST. In general, any weighted voting scheme, or represen-

 tative system (which also breaks ties when all voters have strict preferences), will
 be in i.

 Now, for any y, z c X, we use the notation

 (2.3) Cy z = {j C NlyPiz}

 to represent the set of voters who prefer y to z. For any C c N, we say voter i is
 pivotal for C if CZ W and C u {i} E W. Then we have the following:

 DEFINITION 1: Let y, Z c X, and i c N. Then i is said to be a dummy voter with
 respect to y and x -if, for any C c N - {i} with

 fV, -Ijilc C c N - f),
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 VOTING MODELS 1089

 it is not the case that i is pivotal for C, i.e.,

 Cu{i}e W>Cc W.

 If i is not a dummy voter, he is said to be critical between y and z. In this case,

 there is a C c N - {i} with C. - {i} c C c N y such that C u {i} E W and
 CjZ W.

 Thus, a voter is a dummy voter if, no matter how the indifferent votes are cast,
 the voter has no chance of affecting the outcome. A critical voter, on the other

 hand, is a voter whose vote is worth something, in the sense that there is some
 reassignment of preferences to the indifferent voters such that the voter in

 question becomes pivotal.

 DEFINITION 2: Let y, z c X, and i, j e N; then voter i is said to be as strong as
 voter i between y and z if, for every C c N - {i, j} with

 CY', - i, j c=C c=N - C,y

 j pivotal for C X i pivotal for C, i.e.,

 C u{j} W C u{i} CW.

 Note that if yIiz and yI,z, then if voter i is not a dummy voter between y and z,
 and voter i is as strong as voter j, then i is not a dummy voter between y and z.

 Now for any S c X, we let St denote the interior of S, S denote the closure of S,

 SC denote the complement of S, and B(S) denote the boundary of S (i.e.,
 B(S) = S r) (SC)). Then, we define the frontier of S, F(S), as

 (2.4) F(S) (S0) r ((ST)"l.

 All of these definitions are in the topology on X. Note that for any S c X- F(S) and
 B(S) are always closed sets, with F(S) ' B(S). The frontier of a set S, then, is
 simply a subset of the boundary of S, consisting of all points that are arbitrarily
 close to the interior of S and the interior of its complement. See Figure 2.1 for an
 illustration when S c X _ R2 In this figure S includes the line protruding from the

 sJ
 t F(S) (heavy line)

 FIGURE 2.1-Illustration of B(S) and F(S) (S includes protruding line and intruding line).

This content downloaded from 68.173.125.122 on Sun, 12 Aug 2018 18:00:00 UTC
All use subject to https://about.jstor.org/terms



 1090 R. D. McKELVEY

 main body of S, but does not include the line going in. The frontier of S consists

 only of the heavy line around S, while the boundary also includes the protruding
 and intruding lines.

 Next, we define, for any binary relation R e & and x E X, a correspondence
 R':X 2x by

 (2.5) R'(x)=R(x)={yEXIyRx},

 R'(x) = {y e X|yRz for some z E R'- (x)},

 and

 cc

 R*(x)= U R'(x).
 j=i

 Thus, R1(x) is the set of points in X which can be reached in j steps, via the
 relation R, starting at x. R*(x) is the set of points which can be reached in some
 finite number of steps via the relation R (or in 1 step via the relation R *, where R *
 is the transitive closure of R). If R = f (R), where / e 7 and P and I are associated

 strong and equivalence relations, then R'(x), P'(x), and I'(x) are the sets of points
 which can be reached in j steps via R, P, and I, respectively. Similarly, R'(x),
 P'(x), and I'(x) are the sets of points that can be reached in j steps via the
 individual relations R-, P,, and Ii. Note that if the relation R. is transitive, that
 R'(x) = Ri(x) for all j, k, so in this case Ri(x)= R*(x).

 3. THE MAIN RESULTS

 The main object of interest in this paper is the set P*(x). This is the set of points
 which are reachable, by some finite path, via the social relation, P. In other words,
 for any point y E P*(x), there is an integer K > 0 and a sequence {o0}f'K, with
 00 = X, OK = y, and OiPOi-- for all 1 : i K. We want to determine how big P* (x) is,
 for arbitrary x E X. In order to investigate this question, we do not investigate it
 directly, but rather look at properties that are satisfied on the fronltier of P*(x). It
 will be shown that in general, very restrictive conditions must be met on F(P*(x)).
 For many social choice functions-in particular for majority rule-the conditions
 that must be satisfied on F(P*(x)) are so restrictive as to imply that the frontier
 will be empty. But if X is connected, F(P*(x))= 0 implies (via Lemma 5 of the.
 Appendix), that either P* (x) = 0 or P*(x) = X. The first possibility corresponds
 to the case where x is a core point (i.e., yPx for no y E X), and it is known from
 Plott's theorem [17] that the conditions for a core point are unlikely to be met in
 practice. This leaves the remaining possibility, namely P*(x) = X as the situation
 that would be expected in general. Of course P*(x) -- X implies that virtually any
 point in the entire space is reachable from x.

 Thus, the question of the size of P*(x) reduces to the question of the existence
 of its frontier. If F(P*(x)) - 0, we can conclude that almost any point in X can be
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 VOTING MODELS 1091

 reached from x. The rest of this paper, then, will be devoted to studying the

 frontier of P*(x). This section studies the "global" properties of F(P*(x)), while
 Section 4 looks at the local properties of F(P*(x)).

 Throughout the remainder of the paper, we assume that each individual has a

 continuous utility representation of his preferences, and that he has no "flat
 spots," or regions of indifference in his preferences. Formally, we make the
 following two assumptions.

 ASSUMPTION 1: For each i e N, there is a continuous function u: X -R,
 satisfying, for all x, y E X, ui(x ) - ui (y) & R xRiy.

 ASSUMPTION 2: For each i e N, and all y e X, (Ii (y))" = {x c XI xiiy} = 0.

 It should be noted that although Assumption 2 explicitly makes restrictions

 only on individual preferences, it also implicitly puts some restrictions on X.

 For example, X could not be a finite alternative set, for then it follows from
 2

 Assumption 1 that regardless of the topology on X, that Ii(y) is open, hence

 (I(y))0 # 0. Similarly, if X c R', and R ' has the usual topology, then X can
 contain no isolated points, for if y eX is an isolated point, then in the relative

 topology on X, y E (Ii(y))".
 With the above two assumptions, a number of results about the properties of

 preference sets for individuals and for the social relation can be proven. These are

 formally stated and proven in Lemmas 2-4 of the Appendix. Using these results,
 we prove the following theorem which gives conditions that must be satisfied by
 the set P*(x).

 THEOREM 1: If each voter satisfies Assumption 1, then for any x E X, and all

 y c B (P*(x)),

 P(y) c P*(x) c R(y).

 If all voters also satisfy Assumption 2, then

 P(y) = P*(x).

 It follows that F(P(y)) = F(P* ()

 PROOF: First we deal with the case when only Assumption 1 is met and prove
 P(y) c P*(x). Assume the contrary. Then, we set G = P(y) - P*(x). Since P(y) is
 open (by Lemma 4a), it follows that G is open and non-empty, and P(y) r- G s 0.
 Thus, by lower semi-continuity of P(x) (Lemma 4b), there is a neighborhood

 N(y) of y such that for all z E N(y), P(z) rc) G # 0. But since y C B (P* (x)),
 it follows that N(y) r P*(x) # 0. Hence, pick z* E N(y) r P*(x). Then since

 2By the definition of continuity, the inverse image of every open set is open. Hence, since X is finite,
 we can find a small enough open neighborhood B ' R around ui(y) such that

 u' I (B) = I(y).
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 P(z*) n G # 0, pick w* P(z*) r G. Now z* E P*(x) and since w* C P(z*), it
 follows that w* E P*(x). This is a contradiction since w* c G, and G rn P*(x) = 0.

 So, we must have P(y) c P**(x).
 Now, to prove P*(x)cR(y) it suffices to prove P*(x)cR(y), since R(y) is

 closed (that R (y) is closed follows from Lemma 3a, since R (y) = (Q(y ))C, and Q(y)
 is open). We assume it is not the case that P*(x) c R(y). Then let z c P*(x) with

 z R(y). It follows that yPz => y c P*(x). But this is a contradiction since by
 assumption, y c B (P* (x)), and since P* (x) is open, y i P* (x). Thus, P* (x) c R (y),
 and we are done with the first part of the theorem.

 Now, we assume all ui satisfy Assumption 2 and prove P(y) = P*(x). Since
 P(y) c P*(x) from the above proof, it follows that P(y) c P*(x). Hence we need
 only show that P*(x) c P(y). In fact it is sufficient to show P*(x) c P(y). To show

 this, assume z c P*(x) and z P(y). Then z P(y) => z P(y) => z c Q(y) or z c
 I(y). But z czQ(y) is impossible, since yPz and z c P*(x) implies y c P*(x), a
 contradiction, so we must have z c 1(y). But then by Lemma 3b, it follows that
 either z C P(y) or z E Q(y). By assumption, the former does not hold, so z E Q(y).

 Hence, in any neighborhood of z, we can find a point z* c Q(y). Since P*(x) is
 open (by Lemma 4a), and z c P*(x), we can pick z* z Q(y) n P*(x). In other
 words, yPz*, with z* E P*(x). It follows that y c P*(x). However, again this is a
 contradiction, since by assumption that y c B(P*(x)), it follows that yZ P*(x).
 Hence z C P(y), and P(y) = P*(x). Q.E.D.

 Thus, under Assumptions 1 and 2, Theorem 1 shows that it must be the case that

 for any point, y, on the boundary of P*(x), the set of points which can be reached in
 one step from y must coincide with P*(x), with the possible exception of points of
 closure.

 This result implies restrictions on individual utility functions at frontier points
 of P*(x), which will be the subject of the next theorem. To obtain these
 implications, we first need an additional assumption.

 ASSUMPTION 3 (Diversity of Preferences): For all open S c X, y C F(S), and i,

 j c N, Ii(y) rn I1(y) has no interior in the relative topology on F(S).

 This assumption guarantees that no two voters have preferences whose
 indifference contours exactly coincide locally. To understand the assumption,
 consider the case when X c R r. Then for an open set S c X, F(S) can be thought
 of as defining an arbitrary n - 1 dimensional manifold in X. The assumption then
 states that no two voters can have indifference contours which coincide on any

 open subset of such a manifold. Note that this does not preclude two indifference
 contours from crossing or being tangent at a point.

 Assumption 3 would be met if all voters had "Euclidian" preferences (i.e.,
 preferences based on Euclidian distance from some "ideal point"), as long as the
 ideal points of all voters were distinct. Also, as Cohen [3] proves, the assumption is
 met if all voters have "elliptical" preferences as long as no two voters' preferences
 are exactly the same over the entire space X. Finally note that Assumption 3
 implies Assumption 2, so that Assumption 2 is redundant, given Assumption 3.
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 VOTING MODELS 1093

 In the following theorem, we are concerned with a particular subset of an

 individual's indifference set, which we call the "indifference frontier." For any i C N

 and y E X, we define the indifference frontier IFi(y) for voter i through y by

 (3.1) IFi(y) = F(Pi(y)) r)F(Qi(y)).

 Under Assumptions 1 and 2, it follows (by Lemma 2c of the Appendix) that

 (3.2) IFi(y) = F(Pi(y)) = F(Qi(y)) c Ii(y).

 Thus, the indifference frontier of voter i through y is a subset of the indifference

 contour of voter i through y, which coincides, under our assumptions, with the
 frontier of the set of points he prefers to y.

 Further, for any x c X, we let Yx = F(P* (x)), and we use the notation P, = Pi/ Y,
 to denote the relation Pi restricted to Yx. Qi is defined similarly. We then define
 the indifference frontier relative to Yx, for voter i E N, and y E Yx by

 (3.3) IFi (y) =F (Pi (y)) r) F (Qi(y))

 where the frontiers are defined in the relative topology on Y, It will follow from
 Assumptions 1-3 together with part 1 of the following theorem that for all but one

 voter, say voter j, Assumptions 1 and 2 are satisfied on F(P*(x)), while voter j is
 indifferent between all points in F(P*(x)). Hence, as above, we can write, for all
 i e N,

 (3.4) 1Fi (y) = F(Pi (y)) = F(Qi (y))-

 The set IF,(y) can be thought of as voter i's indifference frontier through y
 relative to his preferences on F(P*(x)). Equivalently, it can be thought of as the
 set of points where individual i's indifference frontier crosses F(P*(x)).

 With these definitions and assumptions, we can now prove the main theorem of
 this paper.

 THEOREM 2: Assume all voters satisfy Assumptions 1 and 2 and 3, and let
 x E X; then:

 (i) There is some i e N, such that for all y E F(P*(x)), F(P*(x)) c IF,.(y) c 1i(y
 (ii) Let y, z C F(P*(x)), and z E IFi(y) for some i E N - {j}. Then (a) if i is not a

 dummy voter with respect to y and z, 3k E N - {i, j} with z e Ik (y); (b) if i is as strong
 as j with respect to y and z, Sk c N - {i, j} with z E lFk(y).

 PROOF: We prove (i) first. The result is trivially true if F(P*(x)) = 0, so assume

 F(P*(x)) # 0. By Theorem 1, Lemma 3c, and Lemma 3d, it follows that for any
 y Ez F(P* (x )),

 (3.5) F(P*(x)) = F(P(y)) C I(y) c U Ii(Y).
 iEN

 We define, for any y E F(P*(x)),

 (3.6) Vi (y) = F(P*(x )) r) Ii (y)-
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 Thus,

 (3.7) U Vi(y)=F(P*(x)).
 icN

 Further, since each Ii((y) is closed, it follows that each Vi (y) is closed in the relative
 topology on F(P*(x)).

 We first want to show that for any yocF(P*(x)), Vj(yo) =F(P*(x)) for some
 j E N. Clearly F(P*(x)) has a relative interior, since F(P*(x)) is non-empty and
 open in the relative topology on F(P*(x)). So, from (3.7) and Lemma 1, it follows

 that some Vi(yo) must have an interior in the relative topology on F(P*(x)). We
 assume, without loss of generality, that Vj(yO) has a non-empty interior. We will
 then show that V)(yo) = F(P*(x)). To show this, we construct a sequence of
 alternatives, y1, . . ., cz F(P*(x)), and a sequence of subsets WI, W c
 F(P*(x)) as follows:

 (3.8) Wi = Vj(yo).

 Then, if Wk has a non-empty interior, we construct Yk and Wk?j as follows:

 (3.9) Yk G Wk,

 Wk+l = Wk -U Vi(Yk).
 I s'

 If Wk has a non-empty interior, it follows that Wk+? has a non-empty interior.
 To see this, we note first that Yk c Wk C W1 = V1(yo). But by transitivity of

 Ij, Vj(yk) = Vj(yo). Thus, Wk c V (yk) and we can rewrite Wk+I as

 (3.10) Wk+I = Wk-U (Vi(yk)r) V (yk))
 isj

 = Wk-A

 where A =LJi,jAi, and Ai= Vi(yk)r) Vi(Yk). Clearly, each Ai is closed in the
 relative topology on F(P*(x)), and by Assumption 3, it follows that each Ai has no
 interior. Thus, A is closed, and by Lemma 1, has no interior. But now, since Wk
 has a non-empty interior, there is a non-empty open set B c Wk. Since we cannot

 have B c A, it follows that C = B - A is non-empty and open and C c Wk+,. Thus
 Wk+, has a non-empty interior, as we wished to show. Hence, by induction, it
 follows that we can construct a sequence of alternatives yl, . .y, En F(P*(x )) and
 of sets WI, . . ., W c F(P*(x)) satisfying (3.9) for all k E N.

 It is easily verified that for any r, s, k c N with k $ j, and r # s, the following two
 properties are satisfied:

 (3.11) Vk(Yr) ( Vk(YJ)=0

 and

 (3.12) U Vi (Yr) = U Vi (Y) = F(P* (x))
 iEN i cN
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 The second property follows directly from (3.7). To see that the first property is

 satisfied, assume, without loss of generality, that r > s. Then Yr e Wr C Wsi =

 W, -UiJ Vi(YJ) 4 Yr Vk(y,). Thus, by transitivity of Ik, we get (3.1 1).
 Now to show that Vi(yo) = F(P*(x)), we assume this is not the case. Then

 F(P*(x))- Vi(yo) 4 0, so we pick y* F(P*(x)) - Vi(y). By (3.12) it follows that
 for each r c N there is a kr c N - {j} such that

 (3.13) Y C Vk,((Yr)-

 But, then for some r,s C N, kr = ks; i.e.,

 (3.14) y E Vk,(Yr) r Vk,(ys).

 But this is a contradiction to (3.11), hence F(P*(x))- V(yo) = 0 4 F(P*(x))
 Vj(yo) as we wished to show.

 It follows that F(P*(x)) c I,(y), for some jc N. Now, we must show that

 F(P*(x)) c IF.(y) c Ij(y). That IF(y) c Ii(y) follows directly from Lemma 2c.
 Now if it is not the case that F(P*(x))cItF(y) then F(P*(x))-IjF(y) is non-
 empty and open in the relative topology on F(P*(x)). But by Lemma 3e

 F(P*(X))U NF(Pi(y)) =Ui NIFi (y) . It follows that for some i f j, IFi (y) has
 an interior in the relative topology on F(P*(y)). But then (Ij(y) r) Ii(y)) also has an
 interior in the relative topology on F(P*(x)), a contradiction to Assumption 3.
 Thus we must have F(P*(x)) c F(P,(y)) c I(y), and (i) is proven.

 To prove (ii)(a), let y, z c F(P*(x)), and assume i e N - {j} is not a dummy voter

 with respect to y and z, and let z c IFi(y). Assume the consequence of ii(a) is false.
 Then pick an open neighborhood N(z) of z such that, for all k i{i, j}, either

 (3.15) N(z) c Pk(y) or N(z) C Qk (Y)

 Since z E1 W(y), it follows that the following two sets are non-empty:

 (3.16) A =F(P*(x)) r Pi(y) r) N(z),

 A2 F(P*(x)) n Qi(y) ( N(z).

 So pick w, I A 1, and w2 c A2. Since w1, W2 c F(P*(x)), and F(P*(x)) = F(P(y)) c
 I(y) (by Theorem 1 and Lemma 3c), it follows that w 1 i P(y) and W2 E Q(y). Thus,
 it follows that

 (3.17) Cwlbyi W and C,QW2E W,

 i.e., Cz ' u {i} W and C, u i{i} V W, which implies, via (2.lb),

 (3.18) CZ,> {j} W.

 But, since the game is strong, we have

 (3.19) CZ = Cz, -{i} W, and C> u{i}X W,
 Cz,Y ,j{j}=Cz,,u{j}-{i}cW, and

 Cz,y u {I} u {i}C W.

 And since voters i and j are the only voters who do not hold strong preferences
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 between y and z, it follows that voter i is a dummy voter with respect to y and z.

 Hence, we have a contradiction, and it follows that z c 4k(y) for some ki {i, j} so
 ii(a) is proven.

 Now to prove ii(b), let y, z C F(P*(x)), with z c IFi (y) for i C N - { j}, and assume
 i is as strong as j with respect to y and z. Then assume zZ IFk(y) for all

 k c N - {i, j}. Then there is a neighborhood N(z) of z such that N(z) r, IFk (y) = 0
 for all k c N - {i, j}. It follows that each of the following sets is nonempty:

 (3.20) A1 = N(z) n Qi(y) rh F(P*(x))- U Ik (y),
 k N-{i,j}

 A2= N(z) n Pi(y) nF(P*(x))- U Ik(Y).
 k e N-{iQj}

 This follows because the sets N(z)> Qi(y)rBF(P*(x)) and N(z)r-P1(y)r-)
 F(P*(x)) are both non-empty (since z c IF(y)) and open in the relative topology

 on F(P*(x)). But then letting A = Al uA2, it follows by construction that for all

 kcN-{i,j} that A'Pk(y) or AcQk(y). Now pick w1cA1, w2cA2; since
 w1 c F(P*(x)) c F(P(y)) c I(y) and W2 c F(P*(x)) c I(y), it follows that

 (3.21) Cw,y jZ W and Cw2, Y 'W.

 By construction Cw,2y = CW' u {i}. Further, Cy u {j} = N - CW2,1Y so, since W is
 generated by a strong game, Cwl y u{j}E W. Setting C = Cw, , we have shown

 (3.22) Cu{i}l W, but Cw{j}c W

 where Cz, - {i, j} = C, c C c N - Cy, In other words, it is not the case that i is as
 strong as j with respect to y and z, which is a contradiction. Hence, z c IFk(y) for

 some k C N - {i, j}. Q.E.D.

 For the case when R = f(R) is generated by majority rule, condition (ii) of the
 above theorem can be simplified, as in this case all voters are as strong as j. We thus

 get the following corollary to Theorem 2 for majority rule.

 COROLLARY 1: Assume all voters satisfy Assumptions 1, 2, and 3, assume

 R = f(R) is generated by majority rule, with n odd, and iet x c X; then:
 (i) there is some j e N such that for all y l F(P*(x))

 F(P*(x)) c Iti(y) c -ij(y);

 (ii) for all y C F(P*(x)), and all i C N,

 IF,(y) U IFk(y).
 kEN-{iij}

 PROOF: This follows directly from Theorem 2 with the observation that if

 R = f(R) is generated by majority rule, then for any y, z C X, and i, j C N, voter i is
 as strong as voter j. This is true because for any C c N- - {i, j}, C u {i}| = IC u fill,
 hence C u {j} C W < C u {i} E W. Q.E.D.
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 We now interpret the above theorem and corollary. The conditions (i) and (ii) of

 the theorem give conditions that must be met by all points on the frontier of P* (x).

 Condition (i) requires that the frontier of P*(x) must be a subset of an indifference

 contour for some voter. In other words, there is one voter, who we label voter j,

 who is indifferent between all points on F(P*(x)). Condition (ii) (a) of the theorem

 says that for any other voter, say voter i, if his indifference curve through a point

 y cF(P*(x)) crosses F(P*(x)) at z, then as long as he is not a dummy voter

 between y and z, there must be another voter, say voter k, whose indifference set

 through y also passes through z. Condition (ii) (b) is simply a modification of (ii)

 (a), which guarantees that if voter i is as strong as j, then voter k's indifference
 contour must also cross F(P*(x)) at z. Note that for majority rule, all voters are as
 strong as j, hence condition (ii) of the corollary requires that for any voter i e N, if

 voter i's indifference frontier through y crosses through a point z e F(P*(x)), then
 there must be at least one other voter whose indifference contour through y also

 crosses through z.

 In order to illustrate the above results, we distinguish three possible cases:

 CASE I: F(P*(x)) = 0.

 CASE II: F(P*(x)) # 0, but 1F(y) c {y} for all i E N, y E F(P*(x)).

 CASE III: F(P*(x)) # 0 and 1Fi(y) -{y} ? 0 for some y c F(P*(x)), i c N.

 The first case is the case when the frontier of P*(x) is empty and, as we shall see,
 is the situation we would expect in general. In Case II, the frontier of P*(x) is not
 empty, but each individual indifference frontier crosses F(P*(x)) at most once.
 Finally, in Case III, F(P*(x)) is not empty, and at least one voter has an
 indifference frontier that crosses F(P*(x)) in at least two points.

 Now in Case I, when F(P*(x)) = 0, both conditions (i) and (ii) of the corollary
 (also of the theorem) are met vacuously. In Case II, condition (ii) of the corollary

 (theorem) is met vacuously, although condition (i) is not. An illustration of this

 case when X c R2 and n = 3 is given in Figure 3.1. Here , the frontier of P*(x)
 must coincide with one voter's indifference frontier, and all indifference frontiers

 for all other voters can cross this frontier only once. Note that Case II can only

 occur with particular types of preferences, when dimension of the space is small.

 For example, if X = R m, with m : 2, and Pi (x) is bounded for all i E N, x E X, then
 Case II could not occur. Further, Case II can only occur if m - 2. Specifically, for

 m :3, then F(P*(x)) would generally be an mr-1 dimensional manifold, and at
 "almost all" points y EF(P*(x)), if IFk(y) ? 0, then Ifty) would have to also
 contain points z ? y arbitrarily close to y, which precludes Case II from occurring.

 Finally, in Case III, neither conditions (i) or (ii) of the theorem and corollary are

 satisfied vacuously, and here the conditions imply severe restrictions on individual
 preferences. An illustration of this case is given in Figure 3.2. Again, the frontier

 of P*(x) coincides with one voter's indifference frontier, in this case that of voter
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 F(P*(x)3- IF,(y)

 Indifference curves
 for voe 3 * <

 x

 Indifference curves for voter 2

 FIGURE 3.1-Illustration of Case II.

 1. But now, since voter 2's indifference frontier through y also passes through the

 point z E F(P*(x)), it follows, by condition (ii), that if voter 2 is not a dummy voter

 between y and z, there must be another voter (in this case voter 4) whose

 indifference frontier through y also passes through z. The same type of coin-

 cidence of indifference frontiers must occur for any other voters whose

 IF3(y)

 < ; 00 | K ~~~~~~~~~~~~~F5(y)

 IF2 (Y)

 FIGURE 3.2-Illustration of Case III.
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 indifference frontiers cross through F(P*(x)) and who are not dummy voters.3

 Note that the figure illustrates condition (ii) for only one y E F(P*(x)). It should be

 kept in mind that condition (ii) implies that similar restrictions must be satisfied for

 all y E F(P*(x)). Specifically, because of continuity of preferences (Assumption
 1), if IFi(y) crosses F(P*(x)) at one point z ? y, then there is a neighborhood N(y)
 of y such that for any yieN(y)r-F(P*(x)), iF;Q9) crosses F(P*(x)) at a point
 z $ y. Voter k's indifference frontier must be able to be paired with another
 voter's indifference frontier for all such y. In Case III, then, either there must be

 one 'strong" voter with an indifference frontier that coincides with F(P*(x)), and
 all other voters whose indifference curves cross F(P*(x)) must be dummy voters

 with respect to any distinct points where they cross, or some voter must have an

 indifference frontier that crosses F(P*(x)) at two distinct points such that he is not
 a dummy voter between these points. The first situation, in which there is one

 strong voter, could arise for general social choice rules. It is obviously precluded by

 majority rule, and here we would always have the second situation. From the
 above discussion, we see that this implies severe restrictions on individual

 preferences, which one would not expect to be met in practice.

 Summarizing, we have shown that for X c R i, we would usfially expect
 F(P*(x))= 0 unless there is one "strong voter," j, with an indifference contour

 coinciding with F(P*(x)) or unless all voters' indifference contours cross F(P*(x))
 at most once. The latter case can only occur if m - 2, and preferences take a

 special form over X. With these exceptions, we would always expect F(P*(x)) = 0
 unless extremely strong "symmetry" restrictions on individual utility functions
 are met at almost all points in F(P*(x)). It follows from the comments at the
 beginning of this section that if X is connected and x is not a core point, that
 P*(x) = X.

 The results for general continuous utility functions, then, seem to resemble

 quite closely those that hold for Euclidian preferences. In general, if X is
 connected, and x E X, P(x) = X, and hence it is possible under the social relation to
 find a path which begins at x and ends arbitrarily close to any point in the space,
 even Pareto dominated ones.

 Finally, before proceeding, it should be noted that in Theorem 2 and Corollary
 1, the choice of X is arbitrary. Thus, for any X c Rm, if X is connected and the
 Assumptions 1-3 are met in the relative topology on X, then we can expect global

 cycles in X unless the restrictions implied under Case II or III are met. Of course,
 because of the severity of the conditions of Theorem 2, it is possible that the set X

 might be chosen in several ways, each of which would lead to global cycles. Thus,
 by the choice of X, there is some control over the path that will be taken from x to
 y. For example, we could force the path to avoid certain alternatives by eliminat-
 ing them from X.

 3The theorem and corollary do not imply that the indifference frontiers must be paired in a 1-1
 fashion, as drawn in the illustration (i.e., they do not prevent three voter's indifference frontiers from
 passing through the point z). However, for majority rule it can be shown that the above pairing is, in
 fact, 1-1. Further it can be shown that given any voter i E N - { j}, F(P*(x)) can be partitioned into sets
 such that within each set, there is a voter k e N - {j, i} whose preferences on F(P* (x)) are essentially
 opposite to those of voter i. A future paper will report on this.
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 4. LOCAL PROPERTIES OF F(P*(x))

 This section formalizes some of the comments of the previous section by

 looking at local properties of individual utility functions at points on F(P*(x)). We
 look only at majority rule, with n odd, in this section, and introduce the additional

 assumption that utility functions are everywhere differentiable. We then get a

 restatement of Theorem 2 in terms of individual utility gradients at points on

 F(P*(x)). It is shown that if F(P*(x)) # 0, that an extremely strong symmetry
 condition on individual gradients must be met at all points in F(P*(x)). We call
 this condition the "joint symmetry" condition. The condition is a natural

 extension of Plott's conditions for the existence of a core point, and is such that if

 X c Rm with m : 3, one would not, in general, expect it to be met. It is also shown
 that this condition is a necessary condition for transitivity of the majority relation

 in X. In other words, for P to be transitive on X, the joint symmetry condition

 must be met at all points x E X. On the other hand, with arbitrary preferences on

 Rm. with m : 3, one would expect the condition to be violated almost everywhere
 in Rm. It follows that the existence of global intransitivities in X is almost
 independent of the choice of X. From this result it follows that not only will there
 generally be a majority path between any two points x and y, but the path can

 generally be chosen to be arbitrarily close to any pre-selected curve connecting
 the two points.

 We make the following additional assumption.

 ASSUMPTION 4: For all i E N, ui is continuously differentiable on X.

 We then define the joint symmetry condition.

 DEFINITION: The set A = {a 1, . . . , an,} C Rm is said to be jointly symmetric with

 respect to j if, for all ai e A -j{a}, 3ake A - {ai, a,} such that {ai, ai, ak} are
 linearly dependent. The set A is jointly symmetric if for some j E N, it is jointly
 symmetric with respect to j.

 The condition of joint symmetry requires, then, that there be some dis-

 tinguished vector a1 E A such that for all the remaining vectors ai E A there is at

 least one additional vector in the space spanned by ai and ai. It should be noted
 that with respect to the usual product topology on (Rm)n for m : 3, the set of
 points where the joint symmetry condition is violated is an open, dense set in
 (Rm)n. Hence the condition is generically violated if m : 3.

 Now for any y E X, we can set

 (4.1) A(y) = {Vu1(y),VU2(y), * * *,VUn(Y)}.

 So A(y) represents the collection of gradients at any point y E X. We now prove
 the following extension of Theorem 2, which proves that if P*(x) has a non-empty
 frontier, every point in this frontier must satisfy the joint symmetry condition:
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 THEOREM 3: Assume n odd, R is majority rule, all voters satisfy Assumptions 1,

 2, 3, and 4, and XcRm is open. Then 3jeN such that, for all x eX and

 y E F(P*(x)), A(y) is jointly symmetric with respect to j.

 PROOF: By Corollary 2, for some voter j E N and all y E F(P*(x)), F(P*(x)) c

 I (y). We will show that for all y E F(P* (x)), A (y) satisfies the joint symmetry
 condition with respect to j. We assume, for some y E F(P*(x)), that A(y) does not
 satisfy joint symmetry with respect to j, and derive a contradiction to Corollary 1.

 We write ai = Vui(y) for all i E N, so A(y) = {ai i E N}. Now, since joint sym-

 metry is violated at y, it follows that for some i e N, {ai, ai, ak} is linearly
 independent for all k E N - {i, j}. Thus, in particular, a1 #0 , ai # O, and a1 # ca
 for any c E R. So, by Lemmas 7 and 8, there is a neighborhood, say N(y) c X, of y

 such that within this neighborhood, Ii (y) coincides with IFi (y) and I (y) coincides
 with F(P*(x)). In other words

 (4.2) N(y) n Ii(y) = N(y) n IFi(y),

 N(y) n I (y) = N(y) n IF,(y) = N(y) n F(P*(x)).

 Further, since ui and u; are continuously differentiable, N(y) can be chosen so it
 also satisfies the condition that for all w E N(y),

 (4.3) Vui(w) # 0,

 Vu1(w) # 0,

 Vui(w)#, cVui(w) forany cER.

 Then, from (4.2) and Lemma 9, we have, for any w E N(y),

 (4.4) w E Ii (y) n) Ii (y) w E IFi (y) n F (P* (x))

 n welFl(y).

 Now, to derive a contradiction to Corollary 2, we must find a point w E F(P*(x))
 such that w E IF (y) and wE IFk (y) for any k E N - {j,k}. In light of (4.4), and

 since IFk (y) - Ik (y), it suffices to find a point w* E N(y) such that

 (4.5) w* E Ii(y) n Iq (y) and

 w* Ik (y) forallkEN-{j,i}.

 We pick z E Rm such that

 (4.6) z*a1=z*ai=O and

 Z a ak 0 ?

 for all k e N - {j, i}. It is clear that we can find such a z, because for each

 k E N - {j, i}, since {ai, ai, ak} iS linearly independent, we can pick Zk E Rm such
 that Zk * a1 = Zk a ai = 0, and Zk a ak # 0. (This can be done using the Graham
 Schmidt procedure, so that Zk corresponds to the third member of an orthogonal

 basis generated by {ai, ai, ak}.) Now, we can choose t1 E R for 1 E N - {j, i} such
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 that z =l: Y-N-{j,i} tIz1 satisfies (4.6).
 Further, set 3i = ai/llaill, and P3i = ai/llaill, and for any E > 0, define

 (4.7) DF = {w w= z + a1f3i + ai3i, where lail S , jail , El.

 Now clearly D, is compact and convex, for all E > 0. Further since the set of z
 satisfying z * ak # 0 is an open set, it follows that we can pick F such that for all

 W E D,, w * ak # 0 for all k e N - {i, '}. Now, by Lemma 6, it follows that for all
 k eN-{j, i}, we can find a tk* cR' such that for tstk,

 (4.8) ak Z > 0 y + tD, CPk(y),

 ak z <0 y +tD, CQk(Y)-

 Also, for {l, k} = {j, i}, and la I -, define

 (4.9) D*(l, a) = {w e D, I w = z + a31 + a3k for some ake R}.

 It follows that for 1e {j, i}, D*(l, E) and D*(l, -E) are compact subsets of D,
 satisfying

 (4.10) w a, > 0 for all w e D*(l, E),

 w a1 < 0 for all w E D*(1, -E).

 Thus, by Lemma 6, it follows that we can find a p * e R + such that for t - p*

 (4.11) y + tD* (I, s) cPI(y),

 y + tD*(1, -E) ' Q0(y).

 Finally, since N(y) is a neighborhood of y, we can pick q* >0 such that for

 (4.12) wey+tD,>weN(y).

 Setting

 (4.13) t min (t*, p*, q*),
 keN-{i, j}

 it follows that, for t t*, (4.8), (4.11), and (4.12) are satisfied.
 We set E =y + t*D,, E = y + t*D*(l, e), and El = y + t*D(1, -i).Now, from

 (4.8) it follows that for all k e N - {j, i}, either

 (4.14) E c Pk(y) or E c Qk(Y)-

 Thus, since Pk(y), Qk(y), and Ik(y) are disjoint, it follows that

 (4.15) EnIk (y) =0

 for all k e N - {j, i}. However, we must prove that

 (4.16) E r- I(y) r Ii(y) # 0.
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 To prove this, note first that, for l E {j, i}, it follows from (4.11) that

 (4.17) Et P1(y),

 E ' Q1(y).

 Now, setting ? * te, any w C E can be written in the form

 (4.18) w = (y + t*z) + b181? bi3i

 where |bj| - e *, and lbil E *. So (4.17) can be rewritten as follows. For any w C E,
 and 1 E {i, j},

 (4.19) bi = *E Ul(W) > Ul(y),

 b1 = * > u1(w) < ul(y).

 But now, for any w ? E, set

 (4.20) T(w) = w + (max [min [uj(y) )-ui(w), E *bj],-* -E bi]) * ji

 + (max [min [ ui(y )- ui( w), E -bi], -- bi ]) i.

 T: E -* E is a continuous mapping on a compact convex set, and hence by the
 Brower fixed point theorem, it follows that there is a fixed point, i.e., a point
 w*CE with T(w*)== w*. But from (4.19) and (4.20), it is easily shown that

 T(w*) = w* < u1(w*) = uj(y) and ui(w*) = ui(y). Hence, we have shown exis-
 tence of a point w* such that

 (4.21) w* Cz E n Ij(y) n Ii(Y)

 and by (4.15), for all k E N - {j, i},

 (4.22) w* i Ik(Y).

 But since E c N(y), w* satisfies (4.5), and we have a contradiction. Hence, it
 follows that A (y) must satisfy the joint symmetry condition with respect to j, as we
 wished to show. Q.E.D.

 Theorem 3 can be thought of as a restatement of Corollary 1 in terms of the
 local conditions that must be satisfied at frontier points of P*(x). As before, if

 F(P*(x)) = 0, then the theorem is satisfied vacuously. However, if F(P*(x)) # 0,
 then the joint symmetry condition must be met by the individual utility gradients
 at all points y E F(P*(x)). The joint symmetry condition is a condition which, if
 m - 3, we would rarely, if ever, expect to be met even at just one point in X. A
 fortiori, we would not expect it to be met at all frontier points. Thus we get a
 further confirmation of the comments of the previous section for m ?e 3. Namely, if
 m ~ 3, and X c R is connected, we can virtually always expect, under majority
 rule, that P*(x) = X for any x E X.

 It follows further that for the majority relation to be transitive on X, we must
 have the joint symmetry condition met at all points in X. This is proven in the

 following Corollary to Theorem 3. Here, for any S c X, and x c Xo, we let

 Ps (x) U= 1 P's(x), where Pl(x) = {y E S|yPx}, and P' (x) = {y e SIyPz for some
 z E P'1 (x)}. So Ps (x) is the set of points within S that can be reached by the
 majority relation.
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 COROLLARY 2: If n is odd, R =f(R) is majority rule, and all voters satisfy
 Assumptions 1, 2, 3, and 4, with X open, then a necessary condition for P to be
 transitive on X is that A (y) be jointly symmetric for all y E X. Further, for any y E X,
 if A(y) is not jointly symmetric, then there is a neighborhood N(y) of y such that, for

 any z E N(y), P* (,)(z) = N(y).

 PROOF: We first prove the second assertion. Assume for some y E X, A (y) is not
 jointly symmetric. Then since each u, is continuously differentiable, it follows that
 we can find a neighborhood N(y) of y (which we may choose to be connected)
 such that for any z e N(y), and any i, j, k e N,

 {Vui (y), Vu1 (y), Vuk(y)} linearly independent

 I {Vui (z), Vui (z), Vuk (z )} linearly independent.

 It follows that, for all z e N(y), A(z) is not jointly symmetric. But then, by

 Theorem 3, F(P*N(y) (z)) - 0 for all z E N(y). But further, we cannot have
 P*N(y) (z) = 0 since then, by Plott's Theorem, the joint symmetry condition would
 be satisfied. Hence, since P*N(y)(z) is open, and N(y) is connected, it follows from
 Lemma 7 that we must have P*N(y) (z) = N(y). Clearly, given any z E N(y), we can
 construct a cycle from y to z and back again, so P is not transitive. Q.E.D.

 We now consider the implications of the previous theorem and corollary. We
 assume X is a connected subset of R t", where m : 3. We define S(X) to be the set
 of points in X where the joint symmetry condition is satisfied, and let V(X)=
 X - S(X) be the set of points in X where the joint symmetry condition is violated.
 From Assumptions 1-4 it follows that S(X) would generally be a closed set with
 no interior. V(X) would then be an open, dense subset of X. Now, from Theorem
 1, it follows that for any x E X, F(P*(x)) c S(X). But then it follows (see Lemma
 5a) that unless S(X), the set of points where joint symmetry is satisfied, chops up
 X into at least two disjoint open sets, we must have F(P*(x)) 0. Thus, a
 sufficient condition for F(P*(x)) = 0 is that V(X) be a connected set.

 A further implication of the above arguments is that we may frequently have
 considerable latitude in choosing a majority path between two points. Thus, for
 any X( c- X, we have V(X0) = XO r-1 V(X), and S(X0) = X(n S(X). So if we wish
 to construct a majority path between x, y E X, we can restrict the path to any
 subset XO of X such that x E XO, y E X(, and such that V(Xo) is connected. Thus,
 the path between x and y can be forced to avoid certain alternatives, as in Figure
 4. 1, by choosing X,, appropriately. In fact, it follows further that if C c X is any
 simple curve connecting x and y such that C r- S(X) = 0, we can construct a
 1'continuous" majority path between x and y, each step of which is arbitrarily
 close to C. To see this, note that by Corollary 2, it follows that given any z E C,
 there is a neighborhood N(z) of z, such that N(z) c V(X). Hence, there will be
 global intransitivities in N(z). Since C is compact, it follows there is a finite
 subcover N(z1), N(z2), ., N(zk) of C, with N(zi) n N(zi,1) # 0 for all i. There
 are global intransitivities within each N(zi), which can be pieced together to form
 a majority rule path from x to y. If each N(z) is chosen so that N(z) c
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 3(X)

 FIGURE 4. 1-Choice of XO to avoid certain alternatives.

 C N (zk)

 S(X)
 Y-y Zk

 N (z) N (z2 Nzl

 X= ZZ Z2

 FIGURE 4.2-Construction of majority path arbitrarily close to curve C.

 {y llz - y 1l < ? }, it follows that the resulting path can be forced arbitrarily close to
 C. See Figure 4.2 for an illustration.

 Finally, it should be pointed out that even though we would seldom expect the

 joint symmetry conditions to be met, even if they are met the conditions are very
 fragile in the same sense that the Plott conditions for an equilibrium are fragile.

 Namely, when the conditions are met they are vulnerable to misrepresentations or

 minor perturbations of any one voter's preferences. Specifically, if the joint

 symmetry conditions are met at a point y c X, and no two voter's gradients are
 linear combinations of each other, it follows that for any k E N, there is a bogus
 representation, say Vuk (y) of Vuk(y), such that

 Ak (y) = (A(y)-{Vuk(y)})U{Vuk(y)}

 does not satisfy the joint symmetry conditions. This suggests that results similar to
 those discussed in McKelvey [13] may hold more generally. Namely that regard-
 less of other voter's preferences, any one voter with complete information of
 other voter's preferences, control of the agenda, and the ability to cast his own
 vote as he chooses can always construct majority paths to get anywhere in the
 space.

 In short, we have argued above that if X c R ' is connected, and m : 3, the
 joint symmetry condition is a severe restriction which at any given point in X we
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 would expect to fail. We would certainly not expect it to be satisfied on large

 subsets of X. Thus, in general, we would expect V(X), the set of points where joint

 symmetry is violated, to be a connected, dense subset of X. But then we have that

 F(P*(x)) = 0 implying that P*(x) = 0 or P*(x) - X. It follows that unless x is a

 core point, we would generally expect to have naturally occurring majority paths
 between x and virtually any other point in the space. Even in the rare instances

 when there are not unlimited majority paths through the entire space, the

 conditions preventing this state of affairs are fragile enough so that any one voter,
 through misrepresentation of his own preferences, could give rise to this situation.

 5. CONCLUSIONS

 Despite the impact Arrow's impossibility theorem has had on the study of social

 choice, there still seems to be a tendency in much of the formal literature dealing

 with majority rule over multidimensional policy spaces to view majority rule as a

 fairly well defined notion, which will generally force the social outcome towards

 "median" like alternatives. Even though it is known that intransitivities will

 generally exist, a substantial literature has developed on the tacit assumption that

 these intransitivities are confined to relatively limited areas of the space.

 The above results have shown that majority rule is not well defined in the above

 sense. Rather, the usual situation will be that majority paths exist between any

 two points in the space. Even in the rare situations when this is not the case, the

 restrictions implied on individual utility functions seem to be so severe that a

 minor perturbation of any one voter's preferences would be sufficient to give rise
 to global intransitivities.

 There are several implications of the above results. First, they seem to imply

 that there are essentially unlimited possibilities for agenda manipulation. Any one

 voter, with knowledge of other voter's preferences, and the power to set the

 agenda could, using binary, majority rule based procedures, arrive at any out-

 come he wants to. See McKelvey [13] for further elaboration on this point.
 Secondly, these results show the inadequacy of arriving at any useful social choice

 functions using the notions of top cycle set or the transitive closure of majority
 rule, as such methods will simply rank all alternatives as socially indifferent.

 Finally, the results indicate that any attempts to construct positive descriptive

 theory of political processes based on majority rule (or other social choice

 functions satisfying the assumptions of this paper) must take account of particular
 institutional features of these systems, as the social ordering by itself does not give

 much theoretical leverage. Much work has already been done in this direction,

 incorporating such institutional features as party competition [6, 11], sequential

 voting under parliamentary rules [7, 9, 15], structured and unstructured com-
 mittee environments [8, 16], and agenda setters [18].

 Carnegie-Mellor University

 and

 California Institute of Technology

 Manuscript received March, 1977; final revision received October, 1978.
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 APPENDIX

 Here we prove some basic properties of the preference sets for the individual relations Ri and the
 social relation R = f(R). We first prove a general result, of which we will make frequent use.

 LEMMA 1: Let Ybe any topological space, and A c Y. If A - U.= 1 Ai, where each Ai c Yis closed,
 with no interior, then A has no interior.

 PROOF: The proof is by induction on n. It is clearly true for n = 1. Assume, now, that the result is
 true for n - 1, but not for n. So there is an open set B with

 0 #BgAc (U An) uAn.

 Now if B c An_ then A, has an interior, which is a contradiction. Hence, we set

 C = B-A,.

 Now 0 ? C ' (U = I Ai), and C is open, which is a contradiction to the induction hypothesis. Hence A
 can have no interior. Q.E.D.

 We now prove some general properties of the individual preference sets. Note first, that for any
 complete binary relation R on X, that X is partitioned by P(x), Q(x), and I(x). For the individual
 relations Ri, under Assumptions 1 and 2, we have the following further results.

 LEMMA 2: If Assumptions 1 and 2 are met, for R = (R 1 i . . , Rn) E 0, then for all i E N, and all x E X,

 (a) Pi(x) and Q2i(x) are open, and Ii(x) is closed with no interior; (b) B (Pi(x)) u B(Qi(x)) = Ii(x); (c)
 F(Pi(x)) = F(Qi(x)) ' Ii(x)-

 PROOF: That Pi(x) and Qi(x) are open follows directly from Assumption 1, because

 Pi(x) = {y E Xui(y) > ui(x)} = u7 ({t c RIt > ui(x)}),

 Qi(x) = {y E Xui(x) > ui(y)} = u' ({t E Rt < ui(x)}),

 but since ui is continuous, the inverse image of every open set is open, hence Pi(x) and Qi(x) are both
 open. Next, since

 Ii (x) = X -Pi (x) -Qi (x),

 it follows that Ii(x) is closed. By Assumption 2, Ii(x) has no interior.
 Now, to prove (b), since Ii(x) has no interior, it follows that any point Ii(x) is an accumulation point

 of Pi(x) or Qi(x), i.e.,

 Ii(x) ' B(Pi(x)) u B(Q(x)).

 But further, since Pi (x) and Qi (x) are both open, with Pi (x) ' ( Qi (x))c and Qi (x) c (Pi (x)), it follows
 that B(Pi(x)) c Ii(x) and B(Qi(x)) c Ii(x), so B(Pi(x)) u B(Qi(x)) c Ii(x). Hence

 Ii(x) = B(Pi(x)) uB(Qi(x)).

 To prove (c), we first prove that

 Pi (X) =[Pi (x) u Ii(x)]?

 and

 Qi(x) = [Qi(x) u Ii(x)]0.

 First, to prove Pi(x) c [Pi(x) u li(x )10, pick y c P,(x), and let N(y) be an arbitrary neighborhood of y.
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 Then since Pi(x) is open, Pi(x)=[Pi(x)]0, so N(y)r-)Pi(x)?_0 #N(y)r nPi(x)?? 0 >
 N(y)r-A[Pi(x)uIi(x)]0 0 #y E[Pi(x)uIi(x)]0. To show [Pi(x)Vul(x)]0cPi(x), pick y E
 [Pi(x) u Ii(x)]0, and let N(y) be an open neighborhood of y. Then N(y) r- [Pi(x) u Ii(x)]0 ? 0. So pick

 z E N(y) r [Pi(x) u Ii(x)]0. Since both N(y) and [Pi(x) u Ii(x)]0 are open, we can find an open
 neighborhood N(z) of z with N(z) c N(y) and N(z) c [Pi(x) u Ii(x)]? i N(z) c Pi(x) u Ii(x). But
 then we must have N(z) r- Pi(x) 5 0, otherwise N(z) c Ii(x), a contradiction to Assumption 2, since
 Ii(x) has no interior. But since N(z) ), it follows that N(y) r- Pi(x) ? 0>yE Pi(x), as we wished
 to show. Thus we have proven that Pi(x) = [Pi(x) ui (x)]?. The proof that Qi(x) = [ Qi (x )7u i7(x? is
 exactly equivalent.

 Now to show F(Pi(x)) = F(Qi(x)), we have, by the definition of the frontier of a set,

 F(Pi(x)) = (Pi(x))0 0 ((PirW)') 0

 = Pi(x) rn (Qi(x) u Ii(x))

 = [Pi(x) u Ii(x) IY Qi(x)

 =((Qi (X)) C) 0 n (Qi (x))

 = F(Qi(x)).

 Finally, since F(Pi(x)) c B(Pi(x)), it follows from (b) that F(Pi(x)) = F(Qj(x)) ' Ii(x)- Q.E.D.

 The next result proves that the properties of individual preference sets given in Lemma 1 are

 inherited by the social relation. Also some relations between the individual and social preference sets

 are proven.

 LEMMA 3: If R = f(R), where f E i, and Assumptions 1 and 2 are met, then for any x E X, (a) P(x)
 and Q(x) are open, and I(x) is closed with no interior; (b) B(P(x))uB(Q(x))=I(x); (c) F(P(x))=

 F(Q(x)) C I(x); (d) I(x) C Uie NI (x); (e) F(P(x)) ' Uie N F(Pi(x)).

 PROOF: We prove (d) first. To prove (d), let y E I(x), and assume y UitNIi(x). Then let

 Cl = {i E Nly E Pi(x)}, C2 = {i E Nly E Qi(x)}, and C3 = {i E Nly E Ii(x)}. By Lemma 2a, Cl, C2, and C3
 partition N, since any i E N must be a member of one of the three sets. Further, since yX Ui = i(x),

 it follows that C3 = 0. Thus Cl = N- C2. Therefore, by (2.lb), it follows that either Cl E W or

 C2 E W. But, by construction yPc,x and xPc2y. Hence, by (2.2), C1 E W 4 yPx and C2E W 1' xPy. So
 in either case, y I(x), a contradiction. Hence y e Un= I i(x), and it follows that I(x) ' Un=I Ii (x).

 We next prove (a). To see that P(x) and Q(x) are open, we note that since f E i, we can write P(x)
 and Q(x) as follows:

 P(x)= U n Pi(x)
 CctW iC

 and

 Q(x)= U n Qi(x).
 CcW itC

 Since finite unions and intersections of open sets are open, it follows that P(x) and Q(x) are open. Since

 I(x) = X - P(x) - Q(x), I(x) is closed. That I(x) has no interior follows directly from Lemma 1 and

 Lemma 3d. From Lemma 3d it follows that I(x)cUi.NIi(x), where each Ii(x) is closed with no
 interior. Hence by Lemma 1, I(x) has no interior.

 The proofs of (b) and (c) follow exactly the pattern of the same proofs in Lemma 2, as the only

 properties that were needed in that proof were that Pi(x) and Qi(x) were open, and Ii(x) was closed
 with no interior. Since I(x), P(x), and Q(x) satisfy these same properties, the proofs go through

 unchanged.

 Finally, to show (e), we again argue by contradiction, and assume y E F(P(x)), with

 Yi Uie N F(Pi(X)). It follows that we can find an open set B, with y E B such that for all i E N, either

 B r- P,(x) = 0 or B r) Qi(x) = 0. We set C1 = {i e NIB r- P,(x) = 0}, and C2 = {i eNIB r) Qi(x) = 0}.
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 Then Cl and C2 partition N, hence by (2.1b), either Cl E W and C2 i W, or Cl i W and C2 e W. In the
 first case, by (2.1 a), it follows that for any C C2, Cit W. But for any z E B, {i c NjzPx} c C2. It follows
 (by (2.2)) that we cannot have zPx. In other words, z i P(x), for any z ce B, or B r- P(x) = 0 4
 y F(P(x)). Since F(P(x)) = F(Q(x)) (from Lemma 3(c)) it follows that y F(P(x)) in the second case

 also. Thus, we have a contradiction, and hence we must have y E Ui N F(Pi(x)). Thus F(P(x)) c

 UiENF(Pi(x)), and (e) is proven. Q.E.D.

 The fourth lemma proves some properties of the higher order preference sets Pi(x) and P*(x) for
 the social relation. We need a definition first. If F: X - 2X is a correspondence on X, we say F is lower

 semi-continuous if for every xo c X, and every open set G c X with G r) F(xo) ? 0, there is a
 neighborhood N(xo) of X( such that xe N(xo)>F(x)r- G ? 0. We now show that P'(x) is lower
 semi-continuous for all j, as is P*(x).

 LEMMA 4: If R = f(R), where f e i, and Assumption 1 is met, then (a) for all x E X and j - 1, P i (x)
 and P*(x) are open sets; (b) for all j - 1, Pi(x) is lower semi continuous, as is P*(x).

 PROOF: Lemma 3(a) proves that P(x) = P1(x) is open. It should be noted that this proof depends
 only on Assumption 1. To prove that P'(x) is open, note that

 P'(x)= U p (y).
 yPfi (x)

 Since Pi(x) is an infinite union of open sets, it is open. Next,

 P*(x) U Pi(x).

 So P*(x) is also an infinite union of open sets and is open, and (a) is proven.
 Now, to prove (b), we first prove P(x) = P'(x) is lower semi-continuous. So let xo E X, and let G c X

 be open with Gr-P'(xo) 50. We must show there is a neighborhood N(xo) of xo such that
 x E N(xo)4P(x) r G 5 0. So let y E G Pl(xo), and set

 N(xo) = {x c Xly e P1(x)} = Q1(y).

 From Lemma 2, N(xO) is open. Also N(x) clearly contains x11. So N(x()) is a neighborhood of xo. Also,
 for all x E Ntxo), y E Pl(x). Hence Pl(x) n G 5 0, so Pl(x) is lower semi-continuous.

 To prove that P'(x) is lower semi-continuous, it suffices to note that P' is the composition product of
 Pj l and Pl. In other words, P'(x) = P1 - P''(x). Since the composition product of two lower
 semi-continuous correspondences is lower semi-continuous [2, Theorem 1, p. 113], it follows by a
 simple induction argument that P'(x) is lower semi-continuous, for all j.

 Now P*(x) = U, I P'(x) is the union of a family of lower semi-continuous mappings. It follows [2,
 Theorem 2, p. 114] that P*(x) is lower semi-continuous. Q.E.D.

 LEMMA 5: If X is any connected topological space, and S X is open, then (a) X - F(S) connected 4
 F(S)= 0; (b) F(S)= 04S= 0 or S=X.

 PROOF: To prove (a), assume X - F(S) is connected and that F(S) ? 0, say y c F(S). Then
 by definition of F(S), it follows that y eS and y (Sc)0. Let A =?, B = (Sc)0, and C = F(S);
 then it is easily verified that AO, Bo, and C partition X. Hence AO and Bo partition X - C = X - F(S).
 Further, both AO and Bo are non-empty, since y E A, y E B, and both A and B are the closure of open
 sets. But then X - F(S) is not connected, in contradiction to the assumption of the Lemma. Hence we
 must have F(S) = 0.

 Now, to prove (b), by the definition of F(S), F(S) = 0 X*

 (A.1) nS(sc )=0-
 But now if S is open, then

 (A.2) S0 U (SC)O = X,
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 because if xi So, then there is a neighborhood N(x) of x such that

 N(x)W r So = 0 > N(x) r) S = 0 > xe (Sc ))

 x E (Sc)

 But now since X is connected, it cannot be expressed as a disjoint union of two nonempty closed sets,

 hence (A2) implies that S? = 0 or (SC)O = 0. But since S is open, P = 0 =>S = 0 ? S = 0. On the
 other hand (Sc)o = 0 4?(Sc)O = 0. But then for any xc S', and every neighborhood N(x) of x,
 N(x)CrSC)c S 0=>N(xr)S5 0=>x c S. Since xeS?x cS, it follows that for all xcX, xc S. In
 other words, S = X. Thus we have shown that either S = 0 or S = X, as we wished to show. Q.E.D.

 LEMMA 6: Let ui: X - R be continuously differentiable on X c R m, and let y c X0. Then if A c R ' is
 compact, and z * Vui(y) > 0 for all z c A then 3t* c R, with t* > 0, such that for all 0 < t < t*, y + tA c

 Pi (y). Similarly ifz Vui(y) < 0 forall z c A, then 3t*c R such thatforall 0 < t - t*, y + tA c Qi (y)

 PROOF: For any z E A, 3t, E R, with t, > 0, such that y + tz e X and ui(y + tz) > ui(y) for all t - t,
 (See, e.g., Zangwill [25, Theorem 2. 1, p. 24] for a proof of this.) In other words, y + tz E Pi (y). But sincc
 Pi(y) is open in the relative topology on X (by Lemma 2(a)), it follows that there is an open
 neighborhood, N(z), of z such that y + t(N(z)) c Pi(y) whenever t < t,. Now, by the Axiom of Choice,
 for any z cA, we can find an open neighborhood N(z) of z, and a t, e R with t, >0 such that
 y + t(N(z)) c Pi(y) for t < t.. Now {N(z)Jz E A} is an open covering of A, hence, since A is compact, by
 the Heine-Borel Theorem it follows that there is a finite subcovering, say {N(z1), . . ., N(ZK)}. Now

 setting t* = min 1i1K tzi, it follows that if t < t*, for any z E A, then z E N(zi) for some 1 <i <K. In
 other words, y + t c Pi(y) since t < y* <t,. But, then, we have just shown that y + tA c Pi(y)
 whenever t < t*, as we wished to show.

 The proof of the second assertion of the theorem is exactly analogous to the above proof. Q.E.D.

 LEMMA 7: Let X c Rm, ui: X - R be continuously differentiable on X, and let y e X0 satisfy
 Vui(y) 5 O. Then there is a neighborhood N(y) of y such that N(y) r Ii(y) = N(y) r4 Fi(y).

 PROOF: Since ui is continuously differentiable, and Vui(y) ? 0, we can find a neighborhood N(y) of
 y such that Vui(w)?0 for all weN(y). Now let wEN(y)r-Ii(y). We let ai=Vui(w), and set
 B = {z E RmlizIIIllaill/2}. Then we set

 D+ = ai + B,

 D =-ai +B.

 It follows that z ai > 0 for all z E D+, and z ai < 0 for all z E D-. Further D+ and D- are compact.
 Thus, by Lemma 6, 3t* such that for t < t*, w + tD+ ( Pi(w) = Pi(y), and w + tD c Qi(w) = Qi(y).
 Hence, w E IFy), and we have shown N(y) r Ii(y) c N(y) r) IFi(y). The reverse inclusion is trivial.

 Q.E.D.

 LEMMA 8: Let Assumptions 1-4 hold for all i e N, letx E X, and let y E X? satisfy y e F(P*(x)). Then
 if Vu,(y) ? 0 for all i E N, there is a neighborhood, N(y) of y such that for some i E N,

 N(y) n F(P*(x)) = N(y) r) Ih(y) = N(y) r) IF(y).

 PROOF: By Theorem 2, for some j E N, F(P*(x)) c I.(y) c IF1(y). By Lemma 7 there is an open

 neighborhood, N(y) of y such that N(y) rIi(y)=N(y)r)IFJ(y). Further, since Vu1(y) ? 0, and u; is
 continuously differentiable, we can pick N(y) so that

 A = N(y) r- P,(y) is connected and

 B = N(y) r- Q,(y) is connected.
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 Further, since y E IF;(y), both A and B are non-empty. Now, from Theorem 2 and Lemma7, we have

 N(y) r- F(P*(x)) c N(y) r Ij(y) = N(y) r-) Fj(y);

 we must only show

 (A.3) N (y) r- LIF (y) c N (y) (- F(P* (x)).

 Suppose, for some z c N(y), z c Li%(y) and z F(P*(x)). Then it follows that

 (A.4) N(y) -F(P*(x)) is connected.

 To see this, note that if N(y) - F(P* (x)) is not connected, then we can find two disjoint open sets, say C,

 D c X such that

 N(y) -F(P*(x)) = C u D,

 [N(y)-F(P*(x))] r, C ? 0,

 and

 [N(y) - F(P*(x))] r D 0.

 But then z c C or z e D. Assume without loss of generality that z c C. Then since z e IFj(y), and C is
 open, it follows that C n A ? 0 and C rn B ? 0. Also, it follows that either D r- A 5 0 or D r) B ? 0.
 Assume without loss of generality that D r) A 5 0. Then

 Cr A() 0,

 D n A ?0,

 and

 A c Cu D.

 Thus A is not connected, a contradiction. Thus we have established N(y) -F(P*(x)) is connected. But
 now by Lemma 5(a), N(y)-F(P*(x)) connected 4N(y)r F(P*(x))= 0, which contradicts the
 assumption that y e F(P*(x)). Hence (A.3) is established, which proves the result. Q.E.D.

 LEMMA 9: Let Assumptions 1-4 hold for all i e N, letx eX, y e X? satisfy ye F(P*(x)), and assume

 F(P*(x)) c I(y). Then if Vu1(y) 0 O and for some i e N -{j}, Vui(y) 5 cVu1(y) for all c e R, there is a
 neighborhood N(y) of y such that, for all w e N(y),

 w e I(y) m Ij(y) > w e IFi(y).

 PROOF: We pick N(y) to satisfy Vui (w) ? cVuj( w ) for all w c N(y), and to simultaneously satisfy the

 conditions that Vui(w) 0 O, Vui(w) 0 O for all w E N(y). Then by Lemmas 7 and 8 it follows that

 N (y) r) Ii (y) = N (y) r- IFi ( y)

 and

 N(y) f) Ii(y) = N(y) r- LFj(y) = N(y) f) F(P*(x)).

 Thus, for any w e N(y),

 w e Ii (y) r) Ii (y) w e IFi (y) n IFj (y)

 w we FiF(w) rF) Fi(w)

 wEIFi(w)CrfF(P*(x)).

 We need only show that in any neighborhood of w there are points in F(P*(x)) which are preferred by i

 to w and points to which he prefers w. Pick z E R such that z Vui(w) = 0 and z - Vui(w) > 0. Let
 N(z) be a closed neighborhood of z such that for all z* e N(z), z* * Vui(w) > 0. Then by Lemma 6,
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 there is a t* such that, for 0 < t < t*,

 0 ? (w + tN(z)) r Ii(y) C Pi(w) r Ij(y) = Pi(w) n F(P*(x)),

 0 # (w - tN(z)) n Ij(y) c Q,(w) r Ij (y) = Q (w) r- F(P*(x)). Q.E.D.

 REFERENCES

 [1] ARROW, K. J.: Social Choice and Individual Values (2nd ed.). New Haven: Yale University
 Press, 1963.

 [2] BERGE, C.: Topological Spaces (translated by E. M. Patterson). New York: Macmillan, 1963.
 [3] COHEN, L.: "Cyclic Sets in Multidimensional Voting Models." Journal of Economic Theory

 (forthcoming).

 [4] COHEN, L., AND S. MATrHEWS: "Constrained Plott Equilibria, Directional Equilibria and
 Global Cycling Sets," Review of Economic Studies (forthcoming).

 [5] DAVIS, 0. A., M. H. DEGROOT, AND M. J. HINICH: "Social Preference Orderings and
 Majority Rule," Econometrica, 40 (1972), 147-157.

 [6] DAVIS, 0. A., M. J. HINICH, AND P. C. ORDESHOOK: "An Expository Development of a
 Mathematical Model of the Electoral Process," American Political Science Review, 64 (1970),
 426-448.

 [7] FARQUHARSON, R.: Theory of Voting. New Haven: Yale University Press, 1969.
 [8] FEREJOHN, J., M. FIoRINA, AND E. PACKEL: "A Non Equilibrium Approach to Legislative

 Decision Theory," Social Science-Working Paper No. 202, California Institute of Technology,
 1978.

 [9] KRAMER, G. H.: "Sophisticated Voting Over Multidimensional Choice Spaces," Journal of
 Mathematical Sociology, 2 (1972), 165-180.

 [10] : "On a Class of Equilibrium Conditions for Majority Rule," Econometrica, 41 (1973),
 285-297.

 [11] : "A Dynamical Model of Equilibrium," Cowles Foundation, Yale University, Discussion
 Paper No. 36, 1975.

 [12] MATrHEWS, S.: "The Possibility of Voting Equilibria," Mimeo, California Institute of Tech-
 nology, Division of Humanities and Social Sciences, 1977.

 [13] McKELVEY, R. D.: "Intransitivities in Multidimensional Voting Models and Some Implications
 for Agenda Control," Journal of Economic Theory, 12 (1976), 472-482.

 [14] McKELVEY, R. D., AND R. E. WENDELL: "Voting Equilibria in Multidimensional Choice
 Spaces," Mathematics of Operations Research, 1 (1976), 144-158.

 [15] McKELVEY, R. D., AND R. G. NIEMI: "A Multistage Game Representation of Sophisticated
 Voting for Binary Procedures," Journal of Economic Theory, 18 (1978), 1-22.

 [16] McKELVEY, R. D., P. C. ORDESHOOK, AND M. WINER: "The Competitive Solution for
 n-Person Games Without Side Payments," American Political Science Review, 72 (1978),

 599-615.
 [17] PLOTr, C. R.: "A Notion of Equilibrium and Its Possibility Under Majority Rule," American

 Economic Review, 57 (1967), 787-806.
 [18] PLOTr, C. R., AND M. E. LEVINE: "A Model of Agenda Influence on Committee Decisions,"

 American Economic Review, 68 (1978),146-160.

 [19] RUBINSTEIN, A.: "A Note About the 'Nowhere Denseness' of Societies Having an Equilibrium
 Under Majority RULE," Econometrica (forthcoming).

 [20] SCHOFIELD, N.: "Instability of Simple Dynamic Games," Review of Economic Studies, 40
 (1978), 575-594.

 [211 : "Generic Instability of Voting Games," Mimeo, Department of Government, University
 of Texas at Austin, 1978.

 [22] SEN, A. K.: "Social Choice Theory: A Re-examination," Econometrica, 45 (1977), 53-90.
 [231 SLOSS, J.: "Stable Points of Directional Preference Relations," Technical Report No. 71-7,

 Operations Research House, Stanford University, 1971.
 [24] SLUTSKY, S.: "Equilibrium Under a Majority Rule," Mimeo. Paper presented at the 1978

 Meetings of the Public Choice Convention, New Orleans, Louisiana.

 [25] ZANGWILL, W. I.: Nonlinear Programming, A Unified Approach. Englewood Cliffs, N.J.:
 Prentice-Hall, 1969.

This content downloaded from 68.173.125.122 on Sun, 12 Aug 2018 18:00:00 UTC
All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17
	image 18
	image 19
	image 20
	image 21
	image 22
	image 23
	image 24
	image 25
	image 26
	image 27
	image 28

	Issue Table of Contents
	Econometrica: Journal of the Econometric Society, Vol. 47, No. 5, Sep., 1979
	Front Matter
	On Shareholder Unanimity in Large Stock Market Economies [pp.  1057 - 1083]
	General Conditions for Global Intransitivities in Formal Voting Models [pp.  1085 - 1112]
	䕱畩汩扲極洠畮摥爠αⵍ慪潲楴礠噯瑩湧⁛灰⸠‱ㄱ㌠ⴠㄱ㈵�
	Equity in Two Person Situations: Some Consequences [pp.  1127 - 1135]
	Groves' Scheme on Restricted Domains [pp.  1137 - 1144]
	On Hotelling's "Stability in Competition" [pp.  1145 - 1150]
	An Estimate of a Structural Hedonic Price Model of the Housing Market: An Application of Rosen's Theory of Implicit Markets [pp.  1151 - 1173]
	Household Bequests, Perfect Expectations, and the National Distribution of Wealth [pp.  1175 - 1193]
	Insurance and Individual Incentives in Adaptive Contexts [pp.  1195 - 1207]
	Perfect Price Aggregation and Empirical Demand Analysis [pp.  1209 - 1230]
	Theory and Time Series Estimation of the Quadratic Expenditure System [pp.  1231 - 1247]
	Estimating the Probability of Leaving Unemployment [pp.  1249 - 1266]
	Estimation and Control of a Macroeconomic Model with Rational Expectations [pp.  1267 - 1286]
	A Simple Test for Heteroscedasticity and Random Coefficient Variation [pp.  1287 - 1294]
	Identification Results for Armax Structures [pp.  1295 - 1304]
	Notes and Comments
	The Borda Rule and Pareto Stability: A Comment [pp.  1305 - 1306]
	Etalon(s) et "Transformation": Pour Clore un Debat [pp.  1307 - 1309]
	Taxes in a Labor Supply Model with Joint Wage-Hours Determination: A Comment [pp.  1311 - 1313]

	1980 World Congress of the Econometric Society: Announcement and Call for Papers [pp.  1315 - 1318]
	Accepted Manuscripts [p.  1319]
	News Notes [pp.  1319 - 1320]
	Back Matter



