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 Econometrica, Vol. 50, No. 6 (November, 1982)

 STRATEGIC INFORMATION TRANSMISSION

 BY VINCENT P. CRAWFORD AND JOEL SOBELI

 "Oh, what a tangled web we weave, when first we practice to deceive!"
 -Sir Walter Scott

 This paper develops a model of strategic communication, in which a better-informed
 Sender (S) sends a possibly noisy signal to a Receiver (R), who then takes an action that
 determines the welfare of both. We characterize the set of Bayesian Nash equilibria under
 standard assumptions, and show that equilibrium signaling always takes a strikingly simple
 form, in which S partitions the support of the (scalar) variable that represents his private
 information and introduces noise into his signal by reporting, in effect, only which element
 of the partition his observation actually lies in. We show under further assumptions that
 before S observes his private information, the equilibrium whose partition has the greatest
 number of elements is Pareto-superior to all other equilibria, and that if agents coordinate
 on this equilibrium, R's equilibrium expected utility rises when agents' preferences become
 more similar. Since R bases his choice of action on rational expectations, this establishes a
 sense in which equilibrium signaling is more informative when agents' preferences are more
 similar.

 1. INTRODUCTION

 MANY OF THE DIFFICULTIES ASSOCIATED with reaching agreements are informa-
 tional. Bargainers typically have different information about preferences and
 even about what is feasible. Sharing information makes available better potential
 agreements, but it also has strategic effects that make one suspect that revealing
 all to an opponent is not usually the most advantageous policy. Nevertheless, it
 seems clear that even a completely self-interested agent will frequently find it
 advantageous to reveal some information. How much, and how the amount is
 related to the similarity of agents' interests, are the subjects of this paper.

 While our primary motivations stem from the theory of bargaining, we have
 found it useful to approach these questions in a more abstract setting, which
 allows us to identify the essential prerequisites for the solution we propose. There
 are two agents, one of whom has private information relevant to both. The
 better-informed agent, henceforth called the Sender (S), sends a possibly noisy
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 1432 V. P. CRAWFORD AND J. SOBEL

 signal, based on his private information, to the other agent, henceforth called the
 Receiver (R). R then makes a decision that affects the welfare of both, based on
 the information contained in the signal. In equilibrium, the decision rules that
 describe how agents choose their actions in the situations in which they find
 themselves are best responses to each other.

 The model and its relationship to the literature are described in Section 2.
 Under assumptions akin to those commonly maintained in the signaling lit-
 erature, equilibrium is characterized in Section 3 in a strikingly simple way.

 Although S's choice of signaling rule is not restricted a priori, in equilibrium he
 partitions the support of the probability distribution of the variable that repre-
 sents his private information and, in effect, introduces noise into his signal by
 reporting only which element of the partition his observation actually lies in. This
 represents S's optimal compromise between including enough information in the

 signal to induce R to respond to it and holding back enough so that his response
 is as favorable as possible.

 There are, in general, several essentially different equilibria, but we argue in

 Sections 4 and 5 that the one whose partition has the greatest number of
 elements is a reasonable one for agents to coordinate on, because it is both
 salient and, before S observes his private information, Pareto-superior to all
 other equilibria. Given this selection, we show under stronger assumptions that,
 in a sense made more precise in Sections 4 and 5, the more similar agents'
 preferences, the more informative the equilibrium signal.

 Section 6 concludes the paper with a brief summary and suggestions for
 further study.

 Our results have, in addition to their intrinsic interest, important implications
 for the design of models that relate the quality of bargaining outcomes to the
 bargaining environment. In particular, the rationalist explanations of the occur-

 rence of bargaining impasses, and of the relationship of their frequency to the
 bargaining environment, with which we are familiar (see Chatterjee and Samuel-
 son [1], Crawford [2], and Sobel and Takahashi [14], for example) all rest on

 agents having different information, either about preferences or about the extent
 to which they have succeeded in committing themselves to their demands. These

 models all abstract from the possibility that agents may find it useful to
 communicate other than by their demands. Our model sheds some light on when
 this is an innocuous simplification, and when it is likely to distort the conclu-
 sions.

 Our model is also potentially applicable to many other situations where
 strategic communication is a possibility. Example applications include business
 partnerships, doctor-patient and lawyer-client relationships, and oligopoly (see
 Novshek and Sonnenschein [12]). Finally, it can be viewed as a principal-agent

 model, with S the agent and R the principal. As will become clear in Section 2,
 however, we depart from the principal-agent literature by treating the principal
 and the agent strategically symmetrically, in contrast to the usual treatment of
 the principal as a Stackelberg leader.
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 STRATEGIC INFORMATION TRANSMISSION 1433

 2. THE MODEL

 There are two players, a Sender (S) and a Receiver (R); only S has private
 information. S observes the value of a random varible, m, whose differentiable

 probability distribution function, F(m), with density f(m), is supported on [0, 1].

 S has a twice continuously differentiable von Neumann-Morgenstern utility
 function Us(y,m, b), where y, a real number, is the action taken by R upon
 receiving S's signal and b is a scalar parameter we shall later use to measure how
 nearly agents' interests coincide. R's twice continuously differentiable von

 Neumann-Morgenstem utility function is denoted UR(y, m). All aspects of the
 game except m are common knowledge.

 Throughout the paper we shall assume that, for each m and for i = R, S,
 denoting partial derivatives by subscripts in the usual way, U'(y, m) = 0 for some

 y, and U',(.) < 0, so that Ui has a unique maximum in y for each given (m, b)
 pair; and that U12(*) > 0. The latter condition is a sorting condition analogous to
 those that appear in the signaling literature; it ensures that the best value of y

 from a fully informed agent's standpoint is a strictly increasing function of the

 true value of m.

 The game proceeds as follows. S observes his "type," m, and then sends a
 signal to R; the signal may be random, and can be viewed as a noisy estimate of

 m. R processes the information in S's signal and chooses an action, which
 determines players' payoffs.

 The solution concept we shall employ is Harsanyi's [4] Bayesian Nash equilib-
 rium, which is simply a Nash equilibrium in the decision rules that relate agents'
 actions to their information and to the situations in which they find themselves.
 Each agent responds optimally to his opponent's strategy choice, taking into
 account its implications in the light of his probabilistic beliefs, and maximizing
 expected utility over his possible strategy choices. Although S's signal necessarily
 precedes R's action in time, because R observes only the signal (and not the
 signaling rule) S's choice of signaling rule and R's choice of action rule are
 strategically "simultaneous." Since we do not allow R to commit himself to an
 action rule and communicate it before S chooses his signaling rule, our solution
 concept differs from that employed in principal-agent models like Hoim-
 strom's [6].

 The Bayesian Nash equilibrium is both the natural generalization of the

 ordinary Nash equilibrium to games with incomplete information and a natural
 extension of the concept of rational-expectations equilibrium to situations where
 strategic interactions are important. It is, therefore, a sensible choice of equilib-
 rium concept with which to study strategic communication, guaranteeing that in
 equilibrium, agents who understand the game extract all available information
 from signals. To put it another way, this equilibrium concept guarantees that
 agents' conditional probabilistic beliefs about each other's actions and character-
 istics are self-confirming.

 Formally, an equilibrium consists of a family of signaling rules for S, denoted
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 1434 V. P. CRAWFORD AND J. SOBEL

 q(n I m), and an action rule for R, denoted y(n), such that:

 (1) for each m E [0,1], q(n I m) dn = 1, where the Borel set N is

 the set of feasible signals, and if n* is in the support of q(* I m),

 then n* solves max Us(y(n), m, b); and

 (2) for each n,y(n) solves maxf UR (y,iM)p(iM I n)dm,

 wherep(m I n)- q(n I m)f(m)/J q(n I t)f(t)dt.2

 Condition (1) says that S's signaling rule yields an expected-utility maximizing
 action for each of his information "types," taking R's action rule as given.
 Condition (2) says that R responds optimally to each possible signal, using Bayes'
 Rule to update his prior, taking into account S's signaling strategy and the signal
 he receives. Since URl(_) < 0, the objective function in (2) is strictly concave iny;
 therefore, R will never use mixed strategies in equilibrium.

 Our model departs from the non-strategic signaling literature (see, for example,

 Spence [15]) principally in the nature of its signaling costs. Signaling models
 typically have exogenously given differential signaling costs, which allow the
 existence of equilibria in which agents are perfectly sorted. Our model has no
 such costs. But R's equilibrium choice of action rule generally creates endogenous
 signaling costs, which allow equilibria with partial sorting. This shows that
 exogenous differential signaling costs are not always needed for informative
 signaling.

 Our model is closely related to that of Green and Stokey [3], who study
 strategic information transmission using a definition of equilibrium that differs

 2More precisely, we may define an equilibrium to be an action rule for R, denoted y(n), and, for
 S, a probability distribution A on the Borel-measurable subsets of [0, 1] X [N] for which '(A X [N])
 = fAf for all measurable sets A. Loeve [8, pp. 137-138] shows that in this setting there exist regular
 conditional distributions q( I m) and p( I n) for (m, n) E [0, 1] x [N]. Then, in place of (1) we have

 (a) A solves max 'f Us(y(n), m, b) d/L,

 where the maximum is taken over all measures on the Borel-measurable subsets of [0, 1] X [N]. Since

 (b) rf fU S(y (n), m, b) dU = f 1 f US(y (n), m, b)q (dn I m)] dm,

 the conditional distributions q( Ii m) satisfy (1).
 Milgrom and Weber [11], who introduced this distributional approach, show that it is equivalent to

 the mixed strategies used in the text. In the present context, this formulation guarantees that q( I m)
 and p( I n) are measurable functions of m and n and hence that the integrals in (1) and (2) are
 well-defined. References to the measure A, as well as to the fact that equalities hold almost surely, are
 suppressed in the text. If S observes m before choosing q(n I m), the signaling rules for values of m
 other than the true one should be viewed as a way of formalizing R's beliefs about the meaning of
 S's signals.
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 STRATEGIC INFORMATION TRANSMISSION 1435

 from ours only in assuming that an agent learns his private information after his

 choice of strategy. We have adopted the alternative assumption that agents

 already know their private information when choosing their strategies, but in the
 present context the two definitions are equivalent. Thus, the main difference

 between our paper and Green and Stokey's is the question considered. They take
 preferences as given and study the effects of improved information on agents'
 welfares at equilibrium; we take information as given and study how agents use
 it differently when their preferences become more similar. (Holmstrom [6] studies

 the latter question in a principal-agent model.) Green and Stokey's [3] model has
 many equilibria, including some, which they call "partition" equilibria, in which
 S introduces noise only by not discriminating as finely as possible in his signal
 among the different information states he is capable of distinguishing; they focus
 on these. As pointed out above, our model has multiple equilibria as well, but
 only partition equilibria. This difference arises because of our additional restric-
 tions on preferences.

 Our model is also related to those of Kreps and Wilson [7] and Milgrom and

 Roberts [9,10], who handle the problem of information transmission in the same
 way we do. Milgrom and Roberts' [9] model is closest in form to ours; but they

 focus mainly on perfectly informative equilibria. This precludes the study of the

 optimal amount of noise to include in a signal. Perfectly informative equilibria

 do not exist in our model, mainly because we assume that signaling has no cost
 to S other than that inherent in its effect on R's choice of action.

 3. EQUILIBRIUM

 This section establishes the existence of equilibria in our model, and character-
 izes them. It is shown that all equilibria are partition equilibria, in which, in

 effect, S introduces noise into his signal only by not discriminating as finely as
 possible among the information states he can distinguish. Further, we show that
 if R's and S's preferences differ, there is a finite upper bound, denoted N(b), on
 the "size" (that is, the number of subintervals) of an equilibrium partition; and
 that there exists at least one equilibrium of each size from one through N(b).
 Necessary and sufficient conditions for a partition of a given size to be consistent
 with equilibrium are given. In Sections 4 and 5, we give conditions that guarantee
 uniqueness of equilibrium for each size, and argue that agents might reasonably
 be expected to coordinate on the equilibrium of size N(b).

 We shall defer, for the sake of exposition, consideration of the form of the
 equilibrium signaling rules, and begin by considering the structure of the set of
 actions that, in equilibrium, are chosen by R with positive prior probability.

 Let N {n :y(n) =y}. We say that an actiony is induced by an S-type mn if
 jN q(n I Fli) dn > 0. Notice that if Y is the set of all actions induced by some
 S-type, then if mi induces y, Us(y, iii, b) = maxy, y Us(y, rn, b). (We assume
 without loss of generality that R takes actions in Y for values of n not in the
 support of any q( I m).) Since U sj(.) < 0, US(y, m, b) can take on a given value
 for at most two values of y. Thus, mn can induce no more than two actions in
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 equilibrium. Define, for all m E [0, 1],

 (3) y S(m, b) _ arg max Us(y, m, b)
 and

 (4) yR(m) -arg max UR (y, m),

 where arg max Us(y,m, b), for example, denotes the value of y that maximizes

 Us(y,m,b). Since U",(*) < O and U2( )> O, i=R,S,yS(m, b) and yR(m) are
 well defined and continuous in m.

 LEMMA 1: If yS(m, b) == y R(M) for all m, then there exists an E > 0 such that if
 u and v are actions induced in equilibrium, Iu - vI > e. Further, the set of actions
 induced in equilibrium is finite.

 PROOF: Let u and v, with u < v, be two actions induced in equilibrium. Since
 an S-type who induces u (v) thereby reveals a weak preference for that action
 over v (u), by continuity there exists an mii E [0, 1] such that Us(u, iii, b)=
 US(vfii, b). Since U( ) < 0 and U (s) > 0, it follows from this that

 (5) u<ys(ii,b)<v,

 (6) u is not induced by any S-type m > m, and

 (7) v is not induced by any S-type m < mii.

 In turn, (6), (7), and our assumption that U1R(_) > 0 imply that

 (8) u?yR(rn)<v.

 However, if yR(m) #yS(m,b) for all m E [0,1], there is an e > 0 such that
 IYR(m) -ys(m,b)i I e for all m E [0,1]. It follows from (5) and (8) that v - u
 > e. Since the set of actions induced in equilibrium is bounded by yR(Q) and
 yR(l) because UR(.) > 0, this completes the proof. Q.E.D.

 REMARKS: Lemma 1 establishes that, under our assumptions, equilibrium must
 involve noisy signaling unless agents' interests coincide. Because signaling is a
 purely informational activity in our model, it cannot be perfectly invertible and
 informative, as it is, for example, in the principal equilibria of Milgrom and
 Roberts [9]. The argument of Lemma 1 can be used to establish that if Us2 and
 UR are one-signed, but have opposite signs, then only one action can be induced
 in equilibrium. Thus in this case no information is transmitted.

 We shall now argue that when agents' interests differ, all equilibria in our
 model are partition equilibria of a particular kind. First, some notation for
 describing partition equilibria is needed. Let a(N) -(aO(N), .. *. , aN(N)) denote
 a partition of [0, 1] with N steps and dividing points between steps ao(N), . . .,
 aN(N), where 0 = ao(N) < al(N) < ... < aN(N) = 1. Whenever it can be done
 without loss of clarity in what follows, we shall write a or a, instead of a(N) or
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 ai(N). Define, for all a, a E [0, 1], a < a,

 I arg max uR (y, m)f(m) dm if a<a,

 yR(a) if a=a.

 Now we are ready to state Theorem 1, which establishes the existence of
 equilibria, and characterizes them.

 THEOREM 1: Suppose b is such that y S(m, b) # y R(m) for all m. Then there
 exists a positive integer N(b) such that, for every N with 1 < N < N(b), there exists
 at least one equilibrium (y(n), q(n I m)), where q(n I m) is uniform, supported on
 [ai, ai, 1] if m E (ai, ai+ 1)

 (A) US(y(ai, a,+ 1), ai, b) - Us(Y(ai_ 1, a), ai, b) = 0

 (=1,9 .. N -1),

 (10) y(n) = y(a1 , ai+ 1) for all n E (a9, a1+ j)

 (1 1) ao= 0 and

 (12) aN= 1.

 Further, any equilibrium is essentially3 equivalent to one in this class, for some value
 of N with 1 <N<N(b).

 REMARKS: Theorem 1 establishes the existence of a partition equilibrium of
 every size from one (completely uninformative) to N(b) (the most informative, in
 a sense made precise below), where N(b) is determined by b, the preference-
 similarity parameter. If preferences are identical for some value of b, or if
 y S(m, b) =yR(m) for some m, existence is easily established, but finiteness does
 not hold in general.

 PROOF: The outline of the proof is as follows. Given Lemma 1, each S-type
 must, in an equilibrium of size N, choose from a set of N values of y. Since
 Ujs(-) > 0, the S-types for whom each value of y that occurs in equilibrium is
 best form an interval, and these intervals form a partition of [0, 1]. The partition,
 a, is determined by (A), a well-defined second-order nonlinear difference equa-

 tion in the ai, and (11) and (12), its initial and terminal conditions. Equation (A)
 is an "arbitrage" condition, requiring that S-types who fall on the boundaries
 between steps are indifferent between the associated values of y. With our
 assumptions on Us, this condition is necessary and sufficient for S's signaling
 rule to be a best response to y(n). Finally, given the signaling rules in the

 3By "essentially," we mean that all equilibria have relationships between m and R's induced
 choice of y that are the same as those in the class described in the Theorem; they are, therefore,
 economically equivalent.
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 1438 V. P. CRAWFORD AND J. SOBEL

 statement of the Theorem, it is easily verified that the integral on the right-hand
 side of (9) is R's expected utility conditional on hearing a signal in the step (a, a).
 It follows that (10) gives R's unique best response to a signal in (ai, ail i), and
 that the signaling rules given in the Theorem are in equilibrium. Any other
 signaling rules that induce the same actions would also work;4 and we close by
 arguing that any other signaling rules consistent with an equilibrium of a given
 size must, given Lemma 1, induce the same actions.

 Formally, we begin by showing that (A), (11), and (12) form a well-defined
 difference equation, that it has a solution for any N such that 1 < N < N(b), and
 that any solution, a, together with the signaling rules given in the Theorem, is a
 best response for S to they(n) that satisfies (10) for the same a. In the rest of this
 section we sometimes suppress the dependence of Us on b for notational clarity.

 First, note that, by (9) and our assumption that UR(.) > 0, y(ai, ai + ) must be
 strictly increasing in both of its arguments. Let a' denote the partial partition
 ao, .. ., ai, which is strictly increasing and satisfies (A). There can be at most
 one value of ai I > ai satisfying (A), because Usl(-) < 0 and y(-) is monotonic.
 Thus any history ao, . . ., ai determines at most one relevant ai+ 1 > ai.5

 Let

 K(a) max{i: there exists 0 < a < a2 < . . . < a, < 1 satisfying (A)}.

 When y s(m, b) y R(m) for every m, it follows from Lemma 1 that y(a1, ai + ) -
 y(ai-, ai) E for some e > 0; hence ai+ 2- ai is bounded above zero for any
 solution of (A). Thus K(a) is finite, well defined, and uniformly bounded, so

 supO<a< IK(a) is achieved for some a Ee (0, 1]. Let N(b) _ K(a) < oo. It remains
 to show that for each N such that 1 < N < N(b), there is a partition a satisfying
 (A), (11), and (12). Let a K(a) be the partial partition of length K(a) that satisfies
 (A) and al (a) = a. Since solutions to (A) vary continuously with respect to initial
 conditions, if aK(a) (the last term in the partial partition a K(a)) is less than unity,
 K(-) is continuous (and therefore locally constant) at a; moreover, K(a) can
 change by at most one at a discontinuity. Finally, K(l) = 1, so K(a) takes on all

 integer values between one and N(b). If K(a,) = N and K(a) is discontinuous at
 a = a,, then a satisfies (A), (11), and (12).

 Now we shall argue that if a satisfies (A), (1 1), and (12), any signal in (ai, ai+ 1)
 is a best response for an S of type m E (ai, ai + ) to they(n) given by (10). More

 4In particular, there is a pure-strategy equilibrium in which the S-types within each step send a
 given signal that differs from those sent by other S-types. To support an equilibrium described this
 way, it is necessary to include, as part of the equilibrium, a specification of how R interprets signals
 that are not in the support of the signaling rule used by some S-type in equilibrium. In the present
 context, any such specification that does not expand the set of R's best-response actions will do.

 5We are able to restrict attention to the strictly increasing partitions that satisfy (A) because

 Us(.) < 0 and the monotonicity of y( ) ensure that the only nondecreasing solutions, a, to (A), (11),
 and (12) satisfy ai < ai+ 1 unless ai = 0 or ai+ I = 1. In the latter two cases, an extreme S-type is
 indifferent between perfectly revealing his type and sending a signal in the adjacent step. Because
 m = 0 and m = 1 occur only with zero probability from R's standpoint, these equilibria are therefore
 essentially equivalent to those in which the extreme S-type does not reveal himself.
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 precisely, (A) implies that

 (13) Us(y(a,,a+,+),m)=maxUs(y(aj,aj+),m) forall mE [a,,a,1j],

 where the maximum in (13) is taken overj = O,.. , N - 1. To see this, note that
 because Us 1(*) < 0 and y(ai, ai+ 1) > y(ai -1, ai), (A) implies (13) for m = ai. Since
 Uj( ) > 0 and m E [ai,aj+1],

 (14) US(y(a1, ai+ 1), m) - US(y(ak , ak+ 1) m)

 > US(y(a, ai+ 1), ai) - US(y(ak, ak+ 1), ai) ? 0 and

 (15) Us(y(ai, ai+ 1), m) - US(y(a, a+ 1), m)

 > US(y(a, ai+ 1), ai+ 1) - US(y(a, aj+ 1), ai+ 1) ? 0,

 where (14) and (15) hold for any 0<k<i<j<N and mE[ai,ai+I]. Con-
 versely, it is clear from this argument that, except for S-types who fall on the
 boundaries between steps, only signals of this kind are best responses for S.

 Now consider R. Provided that S's signaling rule is chosen to be uniform as in

 the statement of the Theorem, when R hears a signal in the step (ai, ai+ 1)

 (16) p(m I n) q(n I m)f(m) fa+'q(n I t)f(t)dt=f(m) fa+If(t)dt.

 Thus his conditional expected utility is

 (17) aia i UR(y, m)p(m I n) dm = + lUR (y, m)f(m) dm f+ 'f(t) dt.

 Therefore, y(ai, ai + ) as defined in (9) is a best response for R to a signal
 n E (ai, ai+ 1)

 Conversely, Lemma 1 shows that any equilibrium is a partition equilibrium,
 and the above arguments show that any equilibrium partition, a, must satisfy

 (A), (11), and (12) for some value of N between unity and N(b). Let yi be the
 action induced by an S-type m e (ai,ai+1) and let Ni {n :y(n) =yi}; if R
 hears a signal n E Ni in such an equilibrium, his conditional expected utility is
 proportional to fiaUR(y(n); m)q(n I m)f(m) dm. Since is a best response to
 any signal n E Ni, it must also maximize

 (18) fai+ I UR (y(n), m)q(n I m)f(m) dn dm I+UR (y(n), m)f(m) dm,

 where the identity follows because y(n) is constant over the range of integration
 and conditional densities integrate to unity. It follows that all equilibria are
 essentially equivalent to those with uniform signaling rules, as given in the
 statement of the Theorem. Q.E.D.

 For 0 < ai-1 < ai < a+j1 < 1, let

 (19) V(a_1 , ai, ai+ 1, b) Us(y(ai, ai+l ), ai, b) - Us(y(ai_1, ai), ai, b).
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 V( ) is the difference in utility to S-type ai between y(ai, ai+) and y(ai1, ai).
 The following Lemma establishes properties of V that are useful in proving

 Corollary 1 and in the analysis of Section 5.

 LEMMA 2: If V(ai-1,ai,ai 1,b) = 0 for 0 < ai-I < ai < ai+I < 1, then
 Us (y(a, ai), ai, b) > 0 and VI(a, ai, ai, 1, b) <0 for all a E [0, aJ 1], and Us (y(ai,
 a), ai, b) < 0 and V3(ai 1, ai, a, b) < Ofor all a E [ai+1, 1].

 PROOF: Since Us(y(ai- 1, ai), ai, b) = Us(y(ai, ai+ 1), ai, b) by hypothesis, y(ai,
 ai+ 1) > y(ai- 1, ai), and U1s1(-) < 0, Uj (y, ai, b) > 0 for y < y(ai1,ai) and Uj(y,
 ai, b) < 0 for y ? Yj(ai, ai+ ). The Lemma follows from the definition of V
 becausey(.) is strictly increasing in both of its arguments. Q.E.D.

 The next result provides a simple condition on preferences that guarantees
 they are far enough apart so that the only equilibrium is totally uninformative.

 COROLLARY 1: If V(O, a, 1, b) > 0 for all a E [0, 1], then N(b) = 1; that is, the
 only equilibrium is uninformative.

 REMARKS: If yS(a, b) > yR(a) for all a, as we assume in Section 5, then
 V(O, a, 1, b) > 0 for all sufficiently large values of a. This is because if y S(a, b)

 2 y R (1) then an S of type a wishes to induce R to take as large an action as
 possible. In particular, if y S(Q, b) 2 yR(l) then N(b) = 1. Under the monotonic-
 ity condition, (M), we shall impose in the comparative statics analysis of Section
 5, the condition of the Corollary is equivalent to Us(y(O, 1), 0, b) > Us(y(O, 0),
 0, b). This means that an S of type m = 0 would rather be completely disguised
 than perfectly revealed.

 PROOF: It follows from Lemma 2 that if V(O, a,, a2, b) = 0 for some 0 < a,
 < a2 < 1 then V(O,a,, 1,b) < 0. Hence V(O,a, 1,b) > 0 for all a E [0, 1] implies
 that there is no partition equilibrium of size two. Thus, by Theorem 1, N(b) = 1.

 Q.E.D.

 4. AN EXAMPLE

 This section works out a simple example, to serve as an antidote to the
 abstractness of the previous section and an introduction to the comparative
 statics questions we shall ask in the next section. In the example, F(m) is uniform
 (on [0, 1]), Us(y,m, b) - (y - (m + b))2, where b > 0 without loss of general-
 ity, and UR(y, m) - (y - M)2. These specifications satisfy all of our main-
 tained assumptions, and have a convenient certainty-equivalence property.

 Consider the conditions that characterize a partition equilibrium of size N.
 Letting a denote the partition as before, we can compute

 y(iai, = .a X a /1^2 i :- 0r .. N -
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 The arbitrage condition (A) specializes to

 (20) -a( a12 + - b) b( i- a1 -a1-b)

 (i =1, . .. , N -1),

 which can only hold, given the monotonicity of a, if

 (21) ai+1 = 2ai-aai- + 4b (i= 1, ..., N-1).

 This second-order linear difference equation has a class of solutions parametrized
 by al (given that ao = 0):

 (22) a,=a,i+2i(i-l)b (i=1,...,N).

 N(b) in Theorem 1 is the largest positive integer i such that 2i(i - l)b < 1, which
 is easily shown to be

 (2 2 b 1+-

 (where <z> denotes the smallest integer greater than or equal to z). Thus, it is
 clear that the closer b approaches zero-the more nearly agents' interests
 coincide-the finer partition equilibria there can be. (We use "finer" informally,
 not in the sense of information theory.) As b -* oo, N(b) eventually falls to unity,
 and only the completely uninformative equilibrium remains; in fact, this occurs
 in our example as soon as b exceeds 1/4, as predicted by Corollary 1.

 It is natural to ask which of these equilibria is best for R and S. In general, the
 answer ex post will be different for different values of m; but ex ante, the answer

 is simple. If am2 denotes the residual variance of m R expects to have after hearing
 the equilibrium signal, it is easy to verify that R's and S's ex ante expected
 utilities are given by EUR = _ 2 and EUs = - (a2 + b2). These expressions
 reflect the facts that quadratic loss equals variance plus the square of bias and
 that the rational-expectations character of Bayesian Nash equilibrium eliminates
 all unconditional bias from R's interpretation of S's signal. R's desire to sety at
 a level b units lower than S would prefer appears as a bias from S's standpoint.
 As the expressions for EUR and EUs make clear, before S learns his type, he has
 an incentive to join with R in reducing variance as much as possible.

 Using (22) and substituting for the value of a,, (1 - 2N(N - I)b)/N, deter-
 mined by aN = 1 yields

 (23) ai = N+2bi(i-N) =0, * * N),

 and

 (24) ai-ai- I + 2b(2i-N-1).
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 It follows that

 N ai_1 +a1 2 1N (25) 12 dm Jai - a;,_ c q 1E3

 (25) 2 [ m- +2b(2i-N-1) - _ If N 71:~v.lI )-12N2 + 3

 For a given value of N, am2 is a convex function of N positive terms that sum to
 unity, so moving the terms closer together always reduces am2. Letting b approach
 zero clearly does this, and am2 is plainly minimized, for given N, when b = 0, since
 only then are all terms equalized. The expression in (25) can be used to show that
 for a given value of b, the partition equilibrium of size N(b) (the largest possible)
 minimizes a 2, and is therefore ex ante Pareto-superior to all other equilibria.
 Since we shall later prove a generalization of this, these calculations are not
 reproduced here.

 While it must be admitted that comparative statics is a risky business when
 there are multiple equilibria, we view these results as tending to confirm our
 intuition that equilibrium should involve more informative signaling the closer
 agents' interests. There are two reasons for this. First, for a partition of given size,
 letting b approach zero reduces the equilibrium variance in our example. And
 second, letting b approach zero, when it expands the set of sizes of partition
 equilibria that can exist, always does so in the direction of making possible
 equilibria with "finer" partitions, and therefore lower variances. Because F is
 fixed and R bases his choice of y on rational expectations, it is natural to take his
 expected utility as a measure of informativeness. In the quadratic case, EUR
 = - am2, so if jumps from one size of partition to another occur, if at all, only in
 the direction in which the set of equilibria expands, our intuition about compara-
 tive statics will be fully borne out. These conclusions suggest that it might be
 useful to seek more general conditions under which making preferences more
 similar shifts the set of equilibria in a more informative direction; we do this in
 the next section.

 But first, we would like to consider, in the relatively simple context of our
 example, whether complete agnosticism about which equilibrium will occur is
 justified, or if some can be ruled out by making further plausible assumptions.
 Two promising avenues of this type seem open to us. The first is to apply
 Schelling's [13, Chapter 4] idea of seeking equilibria that seem "prominent," in
 the hope that they might serve as "focal points" to help agents coordinate their
 strategy choices. It seems clear to us that in our model, the coarsest and the finest
 partition equilibria for a given value of b are prominent. The coarsest one, which
 is necessarily totally uninformative, does not seem very sensible to us (partly for
 efficiency reasons discussed below), so there remains a case for the equilibrium
 with N = N(b).

 The second avenue is to apply Harsanyi's [5, Chapter 7] suggestion that only
 equilibria that are not Pareto-inferior to other equilibria are likely to be observed.
 The idea here is that if the possibilities for enforcing agreements have been
 properly included in the specification of the game, only equilibria are really

This content downloaded from 165.82.131.10 on Thu, 11 Oct 2018 15:14:02 UTC
All use subject to https://about.jstor.org/terms



 STRATEGIC INFORMATION TRANSMISSION 1443

 enforceable. But within the set of equilibria, the usual ceteris paribus tendency

 for efficient outcomes to prevail in economic situations should remain. If agent S

 learns his type before he has an opportunity to reach an agreement with R about

 coordinating strategy choices, there is little to be gained from this approach. As
 we shall see shortly, different S-types have quite different desires about which

 equilibrium should occur, and it would therefore be quite difficult for an S who
 knew his type to negotiate about a selection from the equilibrium correspondence
 without revealing information about his type beyond that contained in his signal

 (and thereby vitiating our characterization of equilibrium). But if the selection
 agreement is made ex ante for a single play of the game, or if it is viewed as a
 convention evolved over repeated play against different opponents, a strong case

 can again be made, in the example, for the equilibrium with the finest partition:
 N = N(b). This leads to the comparative statics results we hoped to establish.
 The arguments of the next section show that this case for the finest partition
 equilibrium remains intact under a reasonable assumption that is satisfied in our
 example but goes considerably beyond it. We conclude that the problems
 inevitably associated with multiple equilibria are particularly mild here.

 Continuing the analysis of the example, consider the case b = 1/20. Then

 N(b) = <- 1/2 + (1/2)V4T1 > = 3, and there are three partition equilibria: K = 1,
 with ao(1) = 0 and al(1) = 1; K= 2, with ao(2) = 0, a1(2) = 2/5, and a2(2) = 1;
 and K = 3, with ao(3) = 0, al(3) = 2/15, a2(3) = 7/15, and a3(3) = 1. The reader
 can easily verify that for K = 1, the utility of an S of type m (who faces no
 uncertainty) is - ((9/20) - m)2; for K = 2, it is - ((3/20) - m)2 if m E [0,2/5)
 and -((13/20) - m)2 if m E (2/5, 1]; and for K = 3, it is -((1 /60) - m)2 if
 mrE[0,2/15), -((1/4)-rm)2 if mrE(2/15,7/15), and -((41/60)-rm)2 if m
 E (7/15, 1]. These imply, as Figure 1 shows, that K= 1 is best for m E (7/20,

 0.0 KX3

 ~K 2

 -0. I

 US

 K I KI

 -0.2

 -0.3_

 I II I I I I I I I
 0.0 0.2 0.4 m 0.6 0.8 1.0
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 11/20); K= 2 is best for m E (1/12,1/5) and m E (11/20,2/3); and K= 3 is
 best for m E [0,1/12), m E (1/5,7/20), and m E (2/3, 1]. Different S-types
 generally prefer different equilibria.

 Before moving on to the more general analysis of the next section, consider
 how the equilibrium payoffs of the S-types in the equilibria just characterized
 compare with the payoffs that would result from the truth, if it were believed
 byR. (The truth always yields R a payoff of zero.) The reader can verify that S's
 equilibrium payoff is as good or better than truth-telling, which yields him
 - b2= - 1/400, if and only if (barring ties): m E (2/5,1/2) when K = 1;
 m E (1/10, 1/5) or m E (3/5,7/10) when K = 2; and m E [0, 1/15), m E (1/5,
 3/10), or m E (19/30,11/15) when K = 3. It is therefore frequently true that a
 commitment to tell the truth would, if believed, pay off. (In the example, such
 commitments are always beneficial ex ante, since they raise EUs from - (b2 +
 a2) to - b2; we have been unable to verify whether this is true under more
 general conditions.) In our model, such commitments are impossible because
 they are unenforceable: R would interpret a true signal incorrectly because he is
 aware of the incentives for S to lie, and S cannot, within the confines of our
 game, remove these incentives. Even though he would like to tell the truth, he is
 forced to cut his losses by lying as the equilibrium in force dictates. This result is
 strongly reminiscent of the main result in Milgrom and Roberts [9].

 5. COMPARATIVE STATICS

 It is natural to ask at this point to what extent the strong comparative statics
 results that hold in our example can be generalized beyond the specifications
 used in Section 4. While we cannot offer a complete answer to this question at
 present, this section provides more general sufficient conditions to establish that
 the results are not merely artifacts of our choice of example.

 Recall that V(ai1,ai,ai+1,b)_ Us(y(ai,ai+1),ai,b) - Us(y(ai1,ai),ai,b). It
 will be assumed throughout this section that Us(y, m, 0) _ UR(y, m), that b ? 0,
 and that Us3(-) > 0 everywhere. These assumptions guarantee that V4(-) > 0 and
 that y s(m, b) > y R(m) for all b > 0; they are satisfied in our examples. That
 Us(-) > 0 means that an increase in b shifts S's preferences away from R's for
 all values of m. For a fixed value of b, we shall call a sequence {ao, . . . , aN} a
 forward (backward) solution to (A) if V(ai -1, ai, ai+ 1, b) = 0 for 0 < i < N and
 ao < a, (ao > a,). We shall impose in addition the following monotonicity condi-
 tion on solutions of (A):

 (M) For a given value of b, if a' and a are two forward solutions of (A) with

 aO = ao and a, > a-, then ai> ai for all i> 2.

 At times it will be convenient to use the following equivalent form of (M):

 (M') For a given value of b, if a and a are two backward solutions of (A) with
 aO = ao and al > a-, then ai > ai for all i > 2.
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 Assumption (M) requires that for a given value of b, starting from any

 ao E [0, 1], the economically relevant solutions of (A) must all move up or down
 together. It therefore guarantees that the boundary-value problem defined by
 (A), (11), and (12) has at most one solution for fixed N, and thus enables us to

 compare partitions of fixed size as b varies. It is immediately clear from (22) that
 (M) is always satisfied in our example and that it is robust at least to small
 deviations from our example. Theorem 2 provides conditions on priors and
 preferences that imply (M):

 THEOREM 2: For a given value of b, if U2s(y, a, b) + Us(y, a, b) is nondecreasing
 in y and fa U/(y, m)f(m) dm + U1R(y, a)f(a) is nonincreasing in a, then all solu-
 tions to (A) satisfy condition (M).

 PROOF: Let ao E [0, 1) be given. To study how solutions to (A) change when
 the initial conditions vary, we specify yo > y R(ao). Let a-{ ao,... , aN } and
 Y-{YO YO YN} be the sequences that satisfy

 (26) fai+iU (yi,m)f(m)dm= O (i O, ... N-1),

 and

 (27) Us(yi, ai, b)- Us(y 1, ai, b)=O? (i= 1,*, N-1).

 Given ai, (26) determines ai +1 as a function of yi; given yi - 1, (27) determines yi as
 a function of ai. Totally differentiating (26) with respect to yi and (27) with
 respect to ai yields

 (28) fai+ i uR (yi ,m)f(m) dm

 -UR(yi, ai+ 1)f(ai+ )vi - UR(yi, ai)f(ai)wi- I

 (i =O,~...,9N -1),

 and

 (29) Us(yi, ai, b) - U2(yi- 1, ai, b) =Us(yi- 1, ai, b)vi_1 - Us(yi, ai, b)wi

 (i = ,. N -1),

 where vi _ dai+I/dyi (i = O, ... , N - 1), wO1 0, and wi dyi/dai (i = 1,
 .. , N - 1). For fixed ao, an initial specification of yo determines

 vo= a , UR (yo , m)f(m) dm/ UiR(y0, a,l(a )

 and then (28) and (29) determine vi and wi for i = 1, . .. , N - 1. Since dai+ I/daI
 is given by IIJ 1wjvj, to prove the Theorem it suffices to show that wi > 1 and
 vi >Ifori= 1,. . .,N-1.
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 First, vo 2 1, since

 (30) Sa, UR (yo m)f(m) dm Ja, UR 1(yo m)f(m)dm

 + faoU(yo ,m)f(m) dm

 ? UR(yo, al)f(al) - U(y0, ao)f(ao)

 ? UR (y0, alfflal) > OX

 The first inequality in (30) follows by hypothesis, since a, > ao, while the second
 and third follow from (26), since URl(_) < 0, UR2(.) > 0, and a, > ao. The proof
 now follows by induction, for if vi_ 1 1 then wi 2 1 by (29), the fact that
 yi > yi- 1, Lemma 2, and the hypothesis that Us(y, a, b) + Uls(y, a, b) is nonde-
 creasing in y. If wi 2 1, then vi > 1 follows by a similar argument from (28).

 Q.E.D.

 REMARKS: The conditions of Theorem 2 are met by our example. They also
 hold for more general specifications. For example, if F(m) is uniform (on [0, 1])
 and, for i = R, S, U'(*) depends on y and m only through y - m (that is, if there
 exist concave functions Ui such that Us(y,m, b) -US(y - m,b) and UR(y, m)
 -UR(y- iM)), then the functions required by the hypotheses of Theorem 2 to
 be nondecreasing and nonincreasing are both constant. Thus, (M) is guaranteed
 to hold if, after m is rescaled to make F(m) uniform (which can be done without

 affecting the signs of the U'1(.) and UlI2( )), each player's preferences shift
 uniformly with m. It is also clear from the proof that the hypotheses of Theorem

 2 are significantly stronger than (M): the proof established that an increase in a,
 leads to larger increases in all subsequent ai, but all that (M) really requires is
 that all of the subsequent ai increase. Since (M) is, in turn, only a sufficient
 condition for the comparative statics results that follow, the hypotheses of
 Theorem 2 are quite far from being necessary for the comparative statics results
 to hold.

 We shall now pause to establish a few useful lemmas.

 LEMMA 3: For a given value of b, if 1 < N < N(b), there is exactly one partition
 equilibrium of size N. Further, if a(N, b) and a(N', b) are two equilibrium partitions

 for the same value of b, and if N' = N + 1, then ai- 1(N, b) < ai(N', b) < ai(N, b)
 for all i= 1, . . ., N.

 PROOF: The first statement is an immediate consequence of Theorem 1 and

 assumption (M). That ai(N', b) < ai(N, b) follows because if ai(N', b) 2 ai(N, b)
 for some i = 1, . .. , N, then a1(N', b) 2 aI(N,b) by (M). This leads to a contra-
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 diction of aN,(N', b) = aN(N, b) = 1. That ai -(N, b) < ai(N', b) follows from
 (M') by a similar argument. Q.E.D.

 Lemma 4 says that if two partial partitions have the same endpoints, the

 partition associated with agents' preferences closer together begins with larger
 steps. This follows because the rate of increase of step size increases as prefer-

 ences diverge. That is, if ai_- < ai are fixed and b > b', then whenever ail I(b)
 and ai+ I(b') > ai satisfy

 V(a- 1' a1 , a1+l I(b), b) = V(a- 1, ai , ai + I(b ), b) = 0,

 then ai+ I(b) > ai+ I(b').

 LEMMA 4: If a(K, b) and a(K, b') are two partial partitions of length K satis-

 fying (A) with b' < b, and ao(K, b) = ao(K, b') = 0, then aK(K, b) = aK(K, b')
 implies that ai(K, b) < ai(K, b') for all i = 1, . . . , K - 1.

 PROOF: The proof is by induction on K. For K = 1, the Lemma is vacuously

 true. Suppose that K > 1 and that the conclusion of the Lemma is true for all
 i = 1, ... , K- 1. Fix b > b', and let a(K, b) and a(K, b') be as in the statement

 of the Lemma. Suppose by way of contradiction that aj(K, b) ? aj(K, b') for
 somej such that 0 < j < K; suppose further thatj is the largest index less than K
 such that this inequality is satisfied, so that ai(K, b) < ai(K, b') for all i such that
 j < i < K. Let Xa (xa0,xaj, . .. , Xaj) be the partial partition that satisfies
 V(xai- ,xai,xai+i,b')=O for i = 1, . . . ,j-1 with xa0= 0 and XaI = x. Since
 aj(K, b') =aI(Kb' )a and, by assumption, aj(K, b) > aj(K, b'), it follows from (M)
 and the continuity of Xa in x that there is an x- > aI(K, b') such that aj(K, b) = Xaj
 and that Xaj ? ai(K, b') for 1 < i < j. Let xa =_. We can establish the following
 relationships:

 (31) V(dj1, aj(K, b), aj+ I(K, b), b) ? V(- 1, aj(K, b), aj+ I(K, b'), b)

 > V(d -,_,aj(K,b),aj+I(K,b'), ?)

 = V(ja- I_ l, a->,a+ i(K, bl),bl) 2 0.

 The first step follows because a>+ 1(K, b) < a>+ 1(K, b') and Us(y(aj(K, b), a),
 aj(K, b), b) is decreasing in a for a > aj+I (K, b) by Lemma 2; the second step
 follows because V(., b)> V(, b'); the third step follows because aj(K, b) =
 a->. To verify the final inequality first observe that Us(y(a>_ 1, a.), a, b') <

 Us(yR(a->),a-j,b'), since Us(y,a->,b') is increasing in y for y < ys(a-j,b) and
 y(a->_ l, a->) <KyR(a-1) <Ky S(a); this implies that either V(aj 1, -, a,b') > 0 and so
 V(d-> j, a->, a,) > 0 for all a E - 1] or there is a unique aj>+ I E (a>, 1] such that
 V(d - -j, a-j + 1, b') = 0 and V( 1,aj, a, b') ? 0 for a E [a->, a->+ I1. If a>j+ I exists, it
 follows from the construction of a- that a->+ 1 ? aj 1(K, b') > aj+ 1(K, b). On the
 other hand, since aj = aj(K, b), the induction hypothesis ensures that i-_ 1
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 ? aj (K, b), and V(aj_ 1(K, b), aj(K, b), a>+ 1(K, b), b) = 0 by construction. But
 then Lemma 2 implies that V(j1, aj(K, b), a>+ 1(K, b), b) < 0, contradicting (31)
 and establishing the Lemma. Q.E.D.

 LEMMA 5: If a(K, b) and a(K, b') are two partial partitions of length K satisfying
 (A) with b > b' and ao(K, b) = ao(K, b') = 0, then aI(K, b) = aI(K, b') implies that
 ai(K,b) > ai(K,b') for all i = 2, ... , K.

 Lemma 5 is an immediate consequence of Lemma 4 and assumption (M).
 Therefore the proof is omitted.

 LEMMA 6: The maximum possible equilibrium partition size, N(b), is nonincreas-
 ing in b, the difference between agents' preferences.

 PROOF: Suppose b' < b. Let a(N(b), b) be a partition equilibrium of size N(b),
 and let a(N(b), b') be the partial partition satisfying (A) with a1(N(b), b')

 = a1(N(b), b). By Lemma 5, ii(N(b), b') < ai(N(b), b) for all i = 2, . .. , N(b). In
 particular, a(N(b), b') is at least of length N(b). It follows that N(b') 2 N(b).

 Q.E.D.

 We are now ready to generalize the comparative statics results of Section 4.

 THEOREM 3: For given preferences (i.e., b), R always strictly prefers equilibrium
 partitions with more steps (larger N's).

 REMARK: Since R bases his choice of y on rational expectations and F is fixed,
 the Theorem extends the argument of Section 4 that equilibria with more steps
 are, ceteris paribus, more informative. A similar comment applies to Theorem 4
 below, in connection with changes in b.

 PROOF: Fix b, and let a(N) be a partition equilibrium of size N < N(b). We
 shall argue that a(N) can be continuously deformed to the (unique) partition
 equilibrium of size N + 1, increasing the expected utility of R, denoted EUR,
 throughout the deformation.

 Let ax _ (aox,aIx, . .. , a1 + ) be the partition that satisfies (A) for i =
 2, .. ., N with ax = 0, ax = x, and a1+j = 1. If x = aN-l(N) then ax =0, and
 if x = aN(N + 1) then ax = a(N + 1) and (A) is satisfied for all i = 1, ... ,N.
 When x E [aN- (N), aN(N + 1)], which is a nondegenerate interval by Lemma 3,
 EUR(x) is strictly increasing in x. To see this, note first that V(c, ax, ax, b)
 7 0 for all c e[0, a] if xE[aN- (N), aN(N + 1)). This follows because
 (aN+ (N + 1), aN+I(N), . . ., aN+ (l), aN+ 1(0)) is a backward solution of (A) of
 length N + 1, and (M') guarantees that any other backward solution of (A), a, of
 length N + 1 with ao = 1 and al = x must satisfy x > aN+ 1(N). Moreover V(O,
 a,(N + 1), a2(N + 1), b) = 0 by the definition of a(N + 1), and hence - V(c,
 a,(N + 1), a2(N + 1), b) > 0 for all c E (0, aI(N + 1)] by Lemma 2. It follows
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 from the continuity of V with respect to x that

 (32) - V(c, ax, aa, b) _ Us(y(c, al), ax, b) - Us(y(a, ax), al Xb) > 0

 forall xE[aN-l(N),aN(N+ 1)) and cE[0,ala.

 Now EUR(x) is given by

 N+ 1

 (33) EUR(X) = E ajx UR(y(ax_ 1, ajx) m)f(m) dm
 j=1 9i

 Since y(ajx 1,ajx), defined in (9) as R's best response to a signal in the step
 [ajx 1,ajxI, maximizes the jth term in the sum and since a1+- 1, the Envelope
 Theorem yields

 dEUR(X) N dajxu
 (34) dx - f(ax) d [UR(y (ax, ajx), ajx)

 - uR(y(ajx, ajx+ 1), aj)].

 Assumption (M) guarantees that dajx/dx > 0 for all] = 1, ... .,N, and

 (35) UR(y(aAx, ax) ax) - UR(y(ax Wax+ x) aX)

 ? Us(y(ajx 1, ajx) ajx, b) - Us(y(ajx, aj+ ), ajx, b)

 (j= 1, ...N)

 The first inequality in (35) holds because y(ajx, ajx) <y(ajX, ax+) and Us ( .)
 > 0; the second inequality is an equality for j = 2, . .. , N by (A) and the
 definition of ax, and holds strictly for j = 1 by (32). This establishes the
 Theorem. Q.E.D.

 THEOREM 4: For a given number of steps (i.e., N), R always prefers thle
 equilibrium partition associated with more similar preferences (i.e., a smaller value
 of b).

 The proof of Theorem 4 is a straightforward application of Lemma 5 and an
 argument like that used to prove Theorem 3, and is therefore omitted.

 THEOREM 5: For given preferences (i.e., b), S always strictly prefers ex ante
 (that is, before learning his type) equilibrium partitions with more steps (larger N's).

 PROOF: Maintaining the notation used in the proof of Theorem 3,

 N+ 1

 (36) EUs(x) = f raj Us(y(ajx 1, ajx) m, b)f(m) dm.
 j=1 IJ-1
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 It follows that

 dEUS(X) N dax

 (37) dx -2f(aJ) dx [Us(y(ajx A,ajx),ajx,b)

 - Us(y(ajx , aj+ 1) ajx, b)]

 N+ I fd- (aj , a + E d(a J) raxU(y(ajx 1,ajx),m,b)f(m)dm.

 The first term on the right-hand side of (37) is positive by (A), (32), and the

 definition of ax. The second term is nonnegative since dy(ajx , ajx)/dx > 0 by
 (M), and the integral expressions are all nonnegative by our assumption that
 Us3(-) > 0 and by the first-order conditions that determine R's optimal choice of
 they(axI, ajx). Q.E.D.

 6. CONCLUSION

 This paper represents an attempt to characterize rational behavior in
 interactive two-person situations where direct communication between agents is a
 possibility. While we have considered explicitly only a small subset of the
 universe of possible models with this property, our results can be generalized
 immediately beyond the confines of our model in several directions. These results
 hint that there may be a good case for presuming that direct communication is
 more likely to play an important role, the more closely related are agents' goals.
 Other interesting conclusions suggested by our theory are that perfect communi-
 cation is not to be expected in general unless agents' interests completely
 coincide, and that once interests diverge by a given, "finite" amount, only no
 communication is consistent with rational behavior.

 Some worthwhile extensions of the model are suggested by the fact that the
 structure of our model interacts with the rational-expectations character of our
 solution concept in such a way that concepts like lying, credibility, and credulity
 -all essential features of strategic communication-do not have fully satisfac-
 tory operational meanings within the model. Generalizations that would test the
 robustness of our results and help to remedy this defect include allowing lying to
 have costs for S, uncertain to R, in addition to those inherent in its effect on R's
 choice of action; allowing R to be uncertain about S's preferences, and therefore
 about his incentives to communicate truthfully; and allowing S to be uncertain
 about R's ability to check the accuracy of what he is told.

 University of California, San Diego

 Manuscript received March, 1981; final revision received December, 1981.
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