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 AGREEING TO DISAGREE'

 BY ROBERT J. AUMANN

 Stanford University and the Hebrew University of Jerusalem

 Two people, 1 and 2, are said to have common knowledge of an event

 E if both know it, 1 knows that 2 knows it, 2 knows that 1 knows is, 1
 knows that 2 knows that 1 knows it, and so on.

 THEOREM. If two people have the same priors, and their posteriors for an
 event A are common knowledge, then these posteriors are equal.

 If two people have the same priors, and their posteriors for a given event A

 are common knowledge, then these posteriors must be equal. This is so even

 though they may base their posteriors on quite different information. In brief,

 people with the same priors cannot agree to disagree.

 We publish this observation with some diffidence, since once one has the ap-
 propriate framework, it is mathematically trivial. Intuitively, though, it is not

 quite obvious; and it is of some interest in areas in which people's beliefs about

 each other's beliefs are of importance, such as game theory2 and the economics

 of information.3 A "concrete" illustration that may clarify matters (and that
 may be read at this point) is found at the end of the paper.

 The key notion is that of "common knowledge." Call the two people 1 and

 2. When we say that an event is "common knowledge," we mean more than

 just that both 1 and 2 know it; we require also that 1 knows that 2 knows it, 2
 knows that 1 knows it, 1 knows that 2 knows that 1 knows it, and so on. For
 example, if 1 and 2 are both present when the event happens and see each other
 there, then the event becomes common knowledge. In our case, if 1 and 2 tell

 each other their posteriors and trust each other, then the posteriors are common

 knowledge. The result is not true if we merely assume that the persons know
 each other's posteriors.

 Formally, let (Q, M, p) be a probability space, 9q and 92 partitions of Q
 whose join4 2 v 2 consists of nonnull events.5 In the interpretation, (Q, M)

 is the space of states of the world, p the common prior of 1 and 2, and !i the

 Received November 1975.

 1 This work was supported by National Science Foundation Grant SOC74-11446 at the Institute
 for Mathematical Studies in the Social Sciences, Stanford University.

 2 Cf. Harsanyi (1967-1968); also Aumann (1974), especially Section 9j (page 92), in which the
 question answered here was originally raised.

 I Cf. e.g., Radner (1968) and (1972); also the review by Grossman and Stiglitz (1976) and the
 papers quoted there.

 4Coarsest common refinement of x and a 2.

 I Events whose (prior) probability does not vanish.

 AMS 1970 subject classifications. Primary 62A15, 62C05; Secondary 90A05, 90D35.
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 information partition of i; that is, if the true state of the world is w, then i is

 informed of that element Pi(@) of .9 that contains w. Given Ct in Q, an event
 E is called common knowledge at w if E includes that member of the meet6 91 A 9
 that contains w. We will show below that this definition is equivalent to the
 informal description given above.

 Let A be an event, and let qi denote the posterior probability p(A I 9i) of A

 given i's information; i.e., if w e Q, theni qi((o) = p(A n Pi(o))1p(Pi(0))
 PROPOSITION. Let w GE Q, and let q1 and q2 be numbers. If it is common knowledge

 at wo that q, = q, and q2 = q2, then q, = q2.

 PROOF. Let P be the member of A 92 that contains w. Write P = uj Pi,
 where the Pi are disjoint members of i1. Since q, = q, throughout P, we have
 p(A n Pi)/p(Pi) = q, for all j; hence p(A n Pi) = qlp(Pi), and so by summing
 over j we get p(A n P) = q1p(P). Similarly p(A n P) = q2p(P), and so q, = q2.
 This completes the proof.

 To see that the formal definition of "common knowledge" is equivalent to the

 informal description, let 0) E Q, and call a member w' of Q reachable from wO if
 there is a sequence Pl, P2, . . ., pk such that so e PI, (o e pk, and consecutive Pi
 intersect and belong alternatively to .9 and .2. Suppose now that o is the true

 state of the world, Pl = P1Qjo), and E is an event. To say that 1 "knows" E
 means that E includes PI. To say that 1 knows that 2 knows E means that E

 includes all PI in _2 that intersect Pl. To say that 1 knows that 2 knows that
 1 knows E means that E includes all P3 in 9P that-intersect P2 in .92 that intersect
 PI. And so on. Thus all sentences of the form "i knows that i' knows that i
 knows ... E" (where i' = 3 -- i) are true if and only if E contains all co' reachable

 from s). But the set of all Go' reachable from co is a member of .) A ,?2; so the
 desired equivalence is established.

 The result fails when people merely know each other's posteriors. Suppose

 Q has 4 elements a, S3 r, o Of equal (prior) probability, 9 = {ca, r3l, 2 =
 {aPr, a}, A = ad, and o = a. Then 1 knows that q2 is 3, and 2 knows that q1
 is 1; but 2 thinks that 1 may not know what q2 is (3 or 1). 2'3

 Worthy Qf note is the implicit assumption that the information partitions p

 and 2 are themselves common knowledge. Actually, this constitutes no loss
 of generality. Included in the full description of a state cl of the world is the

 manner in which information is imparted to the two persons. This implies that

 the information sets P1(w) and P2(w) are indeed defined unambiguously as func-
 tions of co, and that these functions are known to both players.

 Consider next the assumption of equal priors for different people. John
 Harsanyi (1968) has argued eloquently that differences in subjective probabilities
 should be traced exclusively to differences in information-that there is no ra-

 tional basis for people who have always been fed precisely the same information

 to maintain different subjective probabilities. This, of course, is equivalent to

 6Finest common coarsening of S90 and _32.
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 1238 ROBERT J. AUMANN

 the assumption of equal priors. The result of this paper might be considered

 evidence against this view, as there are in fact people who respect each other's

 opinions and nevertheless disagree heartily about subjective probabilities. But

 this evidence is not conclusive: even people who respect each other's acumen

 may ascribe to each other errors in calculating posteriors. Of course we do not

 mean simple arithmetical mistakes, but rather systematic biases such as those

 discussed by Tversky and Kahnemann (1974). In private conversation, Tversky

 has suggested that people may also be biased because of psychological factors,

 that may make them disregard information that is unpleasant or does not con-

 form to previously formed notions.

 There is a considerable literature about reaching agreement on subjective

 probabilities; a recent paper is DeGroot (1974), where a bibliography on the

 subject may be found. A "practical" method is the Delphi technique (see, e.g.,

 Dalkey (1972)). It seems to me that the Harsanyi doctrine is implicit in much

 of this literature; reconciling subjective probabilities makes sense if it is a ques-

 tion of implicitly exchanging information, but not if we are talking about "innate"

 differences in priors. The result of this paper might be considered a theoretical

 foundation for the reconciliation of subjective probabilities.

 As an illustration, suppose 1 and 2 have a uniform prior on the parameter of

 a coin, and let A be the event that the coin will come up H (heads) on the next

 toss. Suppose that each person is permitted to make one previous toss, and that

 these tosses come up H and T (tails) respectively. If each one's information

 consists precisely of the outcome of his toss, then the posteriors for A will be 2

 and I respectively. If each one then informs the other one of his posterior, then

 they will both conclude that the previous tosses came up once H and once T, so

 that both posteriors will be revised to 2

 Suppose now that each person is permitted to make several previous tosses,

 but that neither one knows how many tosses are allowed the other one. For

 example, perhaps both make 4 tosses, which come up HHHT for 1, and HTTT

 for 2. They then inform each other that their posteriors are 3 and I respectively.

 Now these posteriors may result from a single observation, from 4 observations,

 or from more. Since neither one knows on what observations the other's pos-

 terior is based, he may be inclined to give more weight to his own observations.

 Some revision of posteriors would certainly be called for even in such a case;

 but it does not seem clear that it would necessarily lead to equal posteriors.

 Presumably, such a revision would take into account each person's prior on

 the number of tosses available to him and to the other person. By assumption

 these two priors are the same, but each person gets additional private informa-

 tion-namely, the actual number of tosses he is allotted. By use of the prior

 and the information that the posteriors are, respectively, 2 and 3, new posteriors

 may be calculated. If the players inform each other of these new posteriors, fur-

 ther revision may be called for. Our result implies that the process of exchanging

 information on the posteriors for A will continue until these posteriors are equal.
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