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Abstract

We study multilateral bargaining games where agents disagree over their bargaining power. We
show that if agents are extremely optimistic, there may be costly delays in an arbitrarily long finite
game but if optimism is moderate, all sufficiently long games end in immediate agreement. We show
that the game with extreme optimism is highly unstable in the finite-horizon, and we examine the
ramifications of this instability on the infinite-horizon problem. Finally, we consider other voting
rules, and show that the majority-rule may be more efficient than the unanimity rule when agents are
optimistic.
© 2005 Elsevier Inc. All rights reserved.
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“They were so strong in their beliefs that there came a time when it hardly mattered
what exactly those beliefs were; they all fused into a single stubbornness.”— Louise
Erdrich

1. Introduction

Endemic to much of real-world bargaining is subjective uncertainty over the process that
determines bargaining power. Typically, that process is amorphous and bargaining power
is contingent upon uncertain events. In labor settlements, the value of uncertain outside
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options impacts views on bargaining power. In the negotiation of mergers and acquisitions,
the bargaining position of different agents are influenced by each party’s expectations of
future market values. In oligopolistic collusion, the distribution of profits in the event of a
price war induces uncertainty over which firm is in the strongest position to dictate its terms.
In a repeated partnership, uncertainty over the abilities and future contribution of each agent
will affect the negotiation of wages and shares. At a larger scale, the bargaining power in
war and peace negotiations are influenced by expectations of international support. Such
subjective uncertainty over the bargaining process—in the absence of clear information
signals—may naturally foster conflicting expectations and disagreements over the distribu-
tion of bargaining power. Moreover, experimental and empirical evidence lead us to expect
that people may cope with subjective uncertainty by forming optimistic beliefs whereby
each individual expects future uncertainty to be resolved in her favor. 1 If each negotiator
believes that future uncertainty will be resolved to her advantage, delayed agreement seems
plausible as an outcome. Thus, an informal literature has developed that connects opti-
mistic expectations to delays in bargaining. 2 However, the connection between optimism
and delay has not been theoretically established.

It is our aim to provide a sharp characterization of the conditions that lead to delay and
examine the bargaining dynamics that emerge when agents are optimistic in a multilateral
bargaining game. In particular, we show that extreme optimism can cause delay in arbitrarily
long finite horizon games but moderate optimism leads to immediate agreement in every
sufficiently long game. Moreover, the bargaining dynamics that emerge in the event of delay
bear a crucial resemblance to notions of stalemates and ripe moments for agreement. Thus,
our model formalizes the causal connection between optimistic expectations of bargaining
power and dynamics often exhibited by real-world negotiations.

We follow the approach in the literature—particularly, [8,9,16]—in connecting bargain-
ing power to recognition in a random-proposer game. In each round, an agent is randomly
recognized to make an offer, and all other agents vote to accept or reject the offer. Akin
to the power of an agenda-setter, 3 recognition confers the right upon an agent to ask her
opponents to accept a sure payoff or burn money through delay; as such, when an offer is
accepted, the proposer captures rents from agreement. In the absence of outside options,
agents’ continuation values emerge from their ability to capture these agreement rents in
future rounds, and thus, recognition directly translates into bargaining power.

Yildiz [16] examines a bilateral bargaining game where agents have optimistic beliefs
over the recognition process. The examples below demonstrate that such beliefs can cause
delays in short finite-horizon games, but yield immediate agreement in longer games.

Example 1 (Yildiz [16], Example 0). Consider a bilateral bargaining game where two risk-
neutral players are dividing a dollar, share the common discount factor � ∈ ( 1

2 , 1√
2
), offers

can be made at dates t = 0, and 1, and it is common knowledge that each player believes
with probability 1 that she will be recognized at t = 1 independently of recognition at
t = 0. Since the proposer at t = 1 captures the entire surplus, each player anticipates

1 See [2,13].
2 See [2,7].
3 Baron and Ferejohn [3], and Merlo and Wilson [9] make this particular connection.
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receiving � in the event of disagreement at t = 0. Since 2� > 1, whoever is recognized at
t = 0 is unwilling to make an offer the other would be willing to accept. Hence, agreement
is delayed.

Surprisingly, Yildiz [16] shows that if agents are persistently optimistic in this fashion,
rational, and have common knowledge of optimism, then all sufficiently long bilateral
bargaining games end with no delay. This is the Immediate Agreement Theorem and is
demonstrated in the example below.

Example 2 (Yildiz [16], Example 0 continued). Consider an extension of the above bar-
gaining game where offers can be made at dates t = 0, 1, 2, 3, � ∈ ( 1

2 , 1√
2
), and it is

common knowledge that each player believes with probability 1 that she will be recognized
at each date, independently of the recognition history. By the reasoning in Example 0, each
agent knows that if agreement is not possible before t = 2, it will not be possible at t = 2.
As such, at t = 1, each agent’s discounted continuation value is �2. Since 1 − �2 > �2,
and 1 − �(1 − �2) > �(1 − �2), agreement is therefore possible at t ∈ {0, 1}, and is thus
immediate.

Yildiz [16] establishes that backward induction under persistent optimism yields a stable
process whereby if agents know that they will agree before the final round, they will agree
immediately. TheAgreement Theorem then follows: in sufficiently long games, if bargainers
anticipate long periods of fruitless disagreement near the end of the game, they will be
willing to accept smaller shares of the pie earlier in the game. Hence, optimism does not
create delay in bilateral bargaining if the game is sufficiently long.

We demonstrate that optimism may yield delay in arbitrarily long games if there are more
than two players. We consider a canonical multilateral extension to Yildiz’s game where
agents must unanimously agree to an offer for it to be accepted. We show that while the
Immediate Agreement Theorem extends to multilateral bargaining games with moderate
optimism, it fails if agents are extremely optimistic. In particular, backward induction is an
unstable process where agents disagree because they each optimistically expect to capture
future rents from agreement. While future agreement is common knowledge, each agent
perceives the future distribution of the surplus to be in her favor, and has an option-value
to waiting, despite the shrinking surplus.

Example 3. Consider a bargaining game where three risk-neutral players are dividing a
dollar, offers can be made at dates t = 0, 1, 2, 3, 4, players share the common discount
factor � = 0.57, and it is common knowledge that each player believes with probability
1 that she will be recognized at each date, independently of the recognition history. By
the reasoning in Example 0, agents know that if agreement is not attained before t = 3, it
shall not be attained at t = 3. Hence, at t = 2, each agent will agree if offered �2. Since
1 − 2�2 > �2, agreement is attained at t = 2. Now let us move back to t = 1. Each agent
will settle for �(1 − 2�2) � 0.2 since it is common knowledge that agreement is possible in
the next period if it is not attained in the current period. As 1 − 2�(1 − 2�2) > �(1 − 2�2),
agreement is possible at t = 1. Note that at t = 1, the proposer captures 60% of the entire
surplus. Therefore, at t = 0, each agent rejects any offer that provides her with less than
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�(1 − 2�(1 − 2�2)) � 0.34. Yet, no proposer would be willing to make such an offer since
this is greater than what remains if she provided the others with their continuation values:
(1 − 2�(1 − 2�(1 − 2�2))) � 0.32. Therefore, any agent recognized would prefer delay to
providing the others with their continuation values. This leads to a delayed agreement at
t = 1.

This example illustrates the dynamics exhibited generally by multilateral bargaining
games with extreme optimism. Within the game, certain periods emerge endogenously as
ripe moments for agreement, where the proposer expects to capture a large share of the
surplus. These ripe moments lead to stalemates in immediately preceding periods. For
example, at t = 1 in Example 3, the proposer captures 60% of the pie (in contrast to the
agreement at t = 2 where the proposer captures a mere 35% of the pie) and therefore being
the proposer at t = 1 is valuable. Since at t = 0, each agent expects to be recognized at
t = 1, each agent perceives a high option-value from settling tomorrow instead of today.
There is thus, delayed agreement on the equilibrium path.

Moreover, equilibrium strategies display “cyclical” properties with multiple transitions
between agreement and disagreement regimes. In a bargaining game with optimism and
many rounds, consider a time period � where the proposer captures a large share of the
surplus (the last date an offer can be made is one such time period). At dates s < �, each
optimistic agent believes that in the event of disagreement until �, she will be recognized
at � and capture this large surplus. If s is sufficiently close to �, waiting is not particularly
costly, and hence, each optimistic agent will accept only high offers at s. If there are many
such agents, the proposer at date s may prefer waiting to settle at � to acquiescing to each of
the other optimistic agents high demands at date s. This precludes agreement in the periods
immediately preceding �. However, in periods in the distant past—i.e., when �−s is large—
there is common knowledge that agreement shall not be possible in the periods immediately
preceding �. Therefore, the option-value to waiting decreases as the high expectations from
recognition at t are moderated by the increasing cost of delay. Agreement must then be
possible at least at one date t < �. The instability of the backward induction process then
comes into play, leading to the existence of another period near the date t where the proposer
captures a large share of the surplus. This causes delays in even earlier periods.

The bargaining inefficiency represents the impact of irreconcilable beliefs. Agents unan-
imously agree that the delayed agreement does not lie on the Pareto frontier, but disagree
over the set of Pareto-superior allocations. We are able to find a relatively tight bound for
the cost of delay and show that it crucially depends upon the time interval between offers.
In games where these intervals are long, delay can be very costly destroying over half and
even 90% of the pie. On the other hand, frequent offers mitigate the costs of delay, and
in the continuous-time limit of the game, agreement is virtually immediate. Therefore, a
major implication of the Immediate Agreement Theorem is general: persistent optimism
does not create inefficient delay if offers are frequent.

We also study the infinite-horizon game with subjective biases, and find that the cycles
exhibited in the finite-horizon game have ramifications on the infinite-horizon equilibria.
In the standard infinite-horizon multilateral bargaining games, multiplicity is an issue since
every division of the surplus can be supported as a perfect equilibrium outcome. It is thus
standard to select the stationary equilibria. The motivation for this refinement is that strate-
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gies in the stationary equilibria are usually the only subgame perfect strategy profile that is
independent of past history. If agents are moderately optimistic, this equivalence holds mak-
ing the stationary solution a natural candidate. However, if agents are extremely optimistic,
the game possesses a continuum of non-stationary history-independent equilibria, a subset
of which Pareto-dominate the stationary equilibrium. This set of equilibria also includes
some that are only slightly non-stationary, one of which involves delayed agreement. This
establishes that delay in the infinite-horizon game requires neither history-dependence nor
complexity. Moreover, our finite-horizon results establish that with extreme optimism, the
perfect equilibria of finite truncations do not converge to a stationary limit generically. By
rendering backward induction unstable, extreme optimism introduces further challenges
into the infinite-horizon equilibrium selection problem.

The paper is structured as follows. In Section 2, we characterize the multilateral bargain-
ing environment and the recursive structure of equilibrium continuation values. In Section
3, we derive our main results. In Section 4, we examine the infinite-horizon bargaining
game. Section 5 considers an application of our framework to symmetric legislative bar-
gaining games with majority and super-majority voting rules and Section 6 concludes the
paper. All proofs, unless otherwise noted, are in the appendix.

2. Model

The model is a random-proposer bargaining game where agents divide a dollar. In every
time period, an agent is randomly recognized to make an offer. Based on unanimous consent,
this offer is either accepted or rejected by other players. If the offer is rejected, a player is
randomly selected in the following round to make an offer, unless the game is terminated.

Let N = {1, . . . , n} be the set of players, � ∈ (0, 1) the common discount factor, and
let T = {t ∈ N : t < �} for some positive ��∞, where N is the set of non-negative
integers. At each t ∈ T , a player i ∈ N is randomly recognized to make an offer. Offers,
x = (x1, . . . , xn), denote each player’s share, and satisfy the constraint

∑
i∈N xi �1. We

assume that agents vote publicly in a fixed sequential order. If the offer is unanimously
accepted, the game ends yielding the payoff vector (�t x1, . . . , �

t xn); otherwise, the game
proceeds to date t + 1, except for t = � − 1 where the game ends yielding (0, . . . , 0). If
� = ∞, and there is perpetual disagreement, each player has a payoff of 0. All offers are
publicly observable.

At each t ∈ T and s� t , agent i believes at s that she will be recognized at t with probability
pi . We denote by p = (p1, . . . , pn) the vector of these beliefs across agents. If agents
derived their beliefs from a common prior,

∑
i∈N pi would equal 1.

Everything described thus far is common knowledge amongst the agents. The above
conditions define the game, and we denote a game as G(�, p, �). 4

From each agent’s subjective point of view, her belief is true and the others’ beliefs are
optimistic. If p

j
i denotes the probability agent i ascribes to the event {Agent j is recognized

4 The reader may be curious as to why the description of the game does not include one agent’s beliefs about
another’s recognition. The subsequent analysis makes clear that for a fixed pi , the equilibrium is invariant to
changes in i’s beliefs about j’s recognition.



114 S.N.M. Ali / Journal of Economic Theory 130 (2006) 109–137

at t} at all periods s < t , then pj −p
j
i measuresAgent j’s optimism fromAgent i’s subjective

viewpoint. Then agent i believes the collective optimism to be
∑

j∈N\{i}(pj − p
j
i ) which

equals
∑

j∈N pj −1. Since this is independent of i, all agents agree that this is the collective
optimism.

Definition 1 (Measure of optimism). y(p) ≡ ∑
i∈N pi − 1.

As defined, y(p) lies in the interval [−1, n−1]. We assume throughout that the collective
is always weakly optimistic and therefore y�0. 5

Agents’ beliefs are assumed to be stationary. Yildiz [16,17] have shown that if optimism
is followed by eventual pessimism, agreement will be delayed in bilateral bargaining; it is
straightforward to extend this result to the multilateral case. 6 We impose stationarity in our
model to differentiate the delay that we identify in this paper from those that emerge from
changing beliefs: our purpose here is to show that in multilateral settings, even persistent
optimism can create delay.

Our assumption that beliefs are common knowledge is not innocuous. Agents may be
uncertain about both the bargaining process and the beliefs other agents have over that
process. Within this context, one seeks to examine the impact of second-order uncertainty
(and possibly even higher-orders); this inquiry is left to future research. While it seems
likely that private information will accentuate delays, our analysis here shows that extreme
optimism in the absence of private information can create delays.

We denote player i’s perceived continuation value at the beginning of time t in the game
G(�, p, �) as V t

i (�, p, �) and omit the arguments where obvious.

Definition 2 (Perceived Pie). St (�, p, �) ≡ ∑
i∈N V t

i (�, p, �).

St provides a natural representation for the total perceived size of the pie at time t, and
conveniently maps the n-tuple of continuation values into a scalar. We define V and S in
equilibrium recursively.

If �St+1 > 1, then for an offer x to be accepted, it must be that for each agent j, xj is
greater than �V t+1

j . All such offers are infeasible as
∑

j∈N xj �
∑

j∈N �V t+1
j = �St+1

> 1. Therefore, there must be delay at time t, and V t
i = �V t+1

i , and St = �St+1.
Now take the case where �St+1 �1. Here, if recognized, agent i makes an offer to

the group that provides each agent j with her continuation value, �V t+1
j and appropriates

1 − �St+1 + �V t+1
i . Therefore we derive V t

i = pi(1 − �St+1) + �V t+1
i . Adding across

agents, we generate the agreement-mapping, St = f (St+1) ≡ 1 + y − �ySt+1. Note that
f has a unique fixed point, 1+y

1+�y
, which lies in the interval [1, 1

� ] for all (�, y); we denote
this fixed point as S∗.

5 It can be shown that pessimism leads to immediate agreement in every finite-horizon game.
6 That fluctuating beliefs can cause delays has a natural interpretation: if individual perceptions change over

time, then not only may each agent wait for others to have more “reasonable” expectations, but if each agent is
overconfident, she expects others to form more reasonable beliefs in the future, and will therefore wait for that
event if she is sufficiently patient.
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We define the real-valued function � on [0, ∞) to summarize backward induction dy-
namics where

St = �(St+1) =

⎧⎪⎨
⎪⎩

�St+1 if St+1 >
1

�
,

f (St+1) if St+1 � 1

�
.

(1)

We now characterize the subgame perfect equilibria (henceforth SPE). We ignore trivial
multiplicities and focus on the SPE payoffs. 7

Remark 1. In G(�, p, �), for any (t, i) ∈ T × N, where � < ∞, there exists a unique
V t

i ∈ [0, 1] and St ∈ [1, 1 + y] such that at all SPE strategy profiles, the continuation value
of i at the beginning of t is V t

i and V t
i = max{�V t+1

i , pi(1 − �St+1) + �V t+1
i }. Moreover,

St = �(St+1).

In the rest of the text, we refer to these unique SPE continuation values and perceived
pie size as V t

i and St . Therefore, the criterion to assess whether a game has immediate
agreement is the value of S1: if S1 < 1

� , the game will end in immediate agreement, and if

S1 > 1
� , there is delay in the first period.

It is straightforward to extend the usual argument (see [11]) to show that subgame per-
fection need not select a unique outcome in the infinite horizon.

Remark 2. In G(�, p, ∞), if n > 2, and for all i, 0 < pi < 1, then there exists �∗ < 1
such that for all � > �∗, any x ∈ X can be supported as an SPE of G(�, p, ∞).

3. Waiting to settle: Finite horizon delay

Yildiz [16] finds that when agents are optimistic, and have common knowledge of opti-
mism, they will immediately agree in sufficiently long bilateral games. In these bargaining
games, one’s knowledge of the other’s optimism about recognition reduces the perceived
gains from trade. This has a moderating effect on one’s own optimism; as agents foresee
long periods of disagreement near the end of the game, this induces agreement in some
long game. For us to be assured of agreement in all longer games requires then that the
backward induction process be stable: viz., the possibility of agreement in the tomorrow
does not induce disagreement today. This property is satisfied by bilateral bargaining games
but is violated by multilateral bargaining games, creating the tension between our results
and that in [16].

7 The game allows for multiple SPE, but all SPE are payoff-equivalent. Firstly, for any offer that is rejected,
there are different voting profiles that reject that offer. Secondly, when �St+1 > 1, at an SPE, the agent recognized
at t can make any offer less than 1 − �V t+1

i
. Thirdly, when �St+1 = 1, equilibrium behavior is consistent with

both agreement at t or delayed agreement until t + 1.
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To examine the dynamics of the game, we examine the payoffs induced by the SPE of
each game in the sequence, {G(�, p, �)}�∈N+ for each (�, p). We use the construction of an
agreement-absorption set: once the perceived pie lies within this set in the future, agreement
is assured in each preceding period.

Definition 3 (Agreement-absorption). A set X has the agreement-absorption property for
(�, p) if X ⊆ [1, 1

� ], X �= ∅, and x ∈ X ⇒ f (x) ∈ X.

If X is an agreement-absorption set, f maps X to a subset of X. By induction, it follows
that if x lies in X, then for each integer n, f n(x) also lies in X. Trivially, existence of an
agreement-absorption set is guaranteed: {S∗}, the fixed-point of f, satisfies the definition
above.

The lemma below shows that the existence of an agreement-absorption set is connected
to the possibility of immediate agreement in all sufficiently long games.

Lemma 1. For every (�, p), if there exists an agreement-absorption set X and � such that
S1(�, p, �) ∈ X, then for every t �� and t < ∞, G (�, p, t) ends in immediate agreement.

Therefore, immediate agreement in all sufficiently long games is guaranteed if we can
find an agreement-absorption set which contains the perceived surplus for at least one game.
We begin with the candidate set,

[
1, 1

�

]
.

Theorem 1. For every (�, p), there exists a countably infinite set T A such that for all
t ∈ T A, S1(�, p, t) ∈ [1, 1

� ] and the game ends in immediate agreement.

The above result establishes that for every (�, p), there exists countably infinitely many
games where agreement is possible. As such, by Lemma 1, if

[
1, 1

�

]
is an agreement-

absorption set for (�, p), immediate agreement is guaranteed in all sufficiently long games.
We derive a sufficient condition on (�, p) for this to be true.

Lemma 2. For every (�, p) such that �y�1, the following is true:

(a) [1, 1
� ] is an agreement-absorption set.

(b) for every ε�ε∗ = min{S∗ − 1, 1
� − S∗}, the set

[
S∗ − ε, S∗ + ε

]
is an agreement-

absorption set.
(c) if �y < 1, then for all x ∈ [1, 1

� ] and for all ε > 0, there exists N < ∞ such that for
all n > N , |f n(x) − S∗| < ε.

Proof. (a) Since f (x) is strictly decreasing in x, and f ( 1
� ) = 1, then for all x ∈ [1, 1

� ],
f (x) ∈ (1, f (1)). However, f (1) = 1 + y − �y = 1 + y(1 − �)�1 + 1

� (1 − �) = 1
� .

Hence, [1, 1
� ] is an agreement-absorption set.

(b) For any ε�ε∗, consider the set Xε = [
S∗ − ε, S∗ + ε

]
and x ∈ Xε. Then |f (x) − S∗|

= �y|x − S∗|��yε�ε. Therefore, f (x) lies in Xε, establishing that Xε is an agreement-
absorption set.
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  2δ2   2δ 

1 + y - δy

St+1 (1,1)     2 S* 

1/δ

St = δSt+1 

St = St+1 
St 

1/δ 

St = f(St+1)  

2(1-δ3) 

Fig. 1. Moderate optimism (�y < 1).

(c) If �y < 1, for any x that lies in [1, 1
� ], |f (x) − S∗| = �y|x − S∗| < |x − S∗|. By

induction then, |f n(x) − S∗| = (�y)n(|x −S∗|). Since |x −S∗| is fixed and �y is less than
1, for any ε > 0, it suffices to consider N >

log ε−log(|x−S∗|)
log(�y)

. �

Therefore, if �y�1,
[
1, 1

�

]
is an agreement-absorption set. The Immediate Agreement

Theorem follows immediately from Lemma 2 and Theorem 1.

Theorem 2 (Multilateral Immediate Agreement Theorem). For every (�, p) such that
�y�1, there exists t̃ < ∞ such that for all t � t̃ and t < ∞, G(�, p, t) ends with im-
mediate agreement.

The Multilateral Immediate Agreement Theorem shows that if �y is at most 1, then any
sufficiently long bargaining game must end in immediate agreement. In particular, our
Multilateral Immediate Agreement Theorem implies Yildiz’s [16] Immediate Agreement
Theorem since with two agents, y is at most 1.

We illustrate Theorem 2 using Fig. 1, which shows the dynamics when y = 1, and
� ∈ ( 1√

2
, 1

3√2
). At the final round, �, each agent expects to capture the entire dollar if

recognized. Therefore, S�, the perceived pie-size prior to recognition at � is 1 + y = 2.
Since 2 is greater than 1

� , expectations of capturing the rents at the end of the game lead

to disagreement in the preceding round; S�−1 is therefore 2�. Since 2� is greater than 1
�

as well, there is no agreement at � − 2, and hence, S�−2 is 2�2. However, since 2�2 is less
than 1

� , S�−3 = f (2�2) = 2(1 − �3). The phase diagram then illustrates the dynamics
in the preceding rounds where agreement is possible. Moreover, as seen in the figure, the
iterates of f gradually converge to S∗. The agreement-absorption property of

[
1, 1

�

]
follows

from 1 + y − �y = 2 − �� 1
� . The latter two parts of Lemma 2 follow from the slope of
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f being �y = � < 1. S∗ is thus an attractor in the set
[
1, 1

�

]
, leading to the convergence of

perceived pie sizes as we make the game longer.
The bargaining game changes remarkably when �y is greater than 1. It is straightforward

to verify that [1, 1
� ] is no longer an agreement-absorption set, 8 but this does not establish

delay as illustrated by the following example.

Example 4. Consider G(�, p, �) where � < ∞, N = {1, 2, 3, 4, 5}, pi = 19
20 for each

agent i, and � = 2
5 . Then, at � − 1, agreement requires that each agent be offered at least

2
5 ( 19

20 ). Since this is infeasible, there is no agreement. Hence, at t̃ −2, an agent will agree to
an offer of at least ( 2

5 )2( 19
20 ). As 1 − 4( 19

125 ) > 19
125 , agreement is possible. The reader can

verify then that for each agent i, V t̃−2
i = 19

50 , and St̃−2 = 19
10 . As 19

10 < 1
� and f ( 19

10 ) = 19
10 ,

agreement is possible at all t ∈ {0, 1, 2, . . . , � − 3}. Hence, the game ends with immediate
agreement. However,

[
1, 1

�

]
is not an agreement-absorption set as f (1) = 13

4 > 5
2 = 1

� .

We prove below that such examples are non-generic: if �y > 1, then {S∗} is the unique
agreement-absorption set, and generically, this implies the existence of delay in some arbi-
trarily long game.

Lemma 3. For every (�, p) such that �y > 1, {S∗} is the unique agreement-absorption
set.

Proof. Consider any set X �= {S∗} such that X ⊆ [1, 1
� ] and select x ∈ X\{S∗}. Note

that |f (x) − S∗| = �y(|x − s|). By induction, |f k(x) − S∗| = (�y)k|x − S∗|. It can

then be verified that |f k(x) − S∗| > | 1
� − S∗| for all k � log(| 1

� −S∗|)−log(|x−S∗|)
log(�y)

. Choose a

particular such k. If f k(x) > S∗, then |f k(x) − S∗| > | 1
� − S∗| implies that f k(x) > 1

� ,
and hence, f k(x) /∈ X. If f k(x) < S∗, then since f is a decreasing function, it must be
that f k+1(x) > f (S∗) = S∗. Since |f k+1(x) − S∗| > | 1

� − S∗|, this establishes that

f k+1(x) > 1
� , and hence, f k+1(x) /∈ X. Therefore, X is not an agreement-absorption

set. �

When �y is greater than 1, we have shown that the unique agreement-absorption set is
{S∗}. We use this result to construct arbitrarily long games with delay.

Theorem 3. For almost every (�, p) such that �y > 1, there are countably infinite sets
T A and T D with T A ∪ T D = N+, such that for all � ∈ T A, G(�, p, �) has immediate
agreement, and for all � ∈ T D , G(�, p, �) has disagreement in the first round.

Proof. Consider a particular (�, p) where �y > 1. The existence of the set T A follows
from Theorem 1. To establish the existence of T D , it suffices to show for any G(�, p, t)

that ends in immediate agreement, there exists t ′ > t such that the SPE of G
(
�, p, t ′

)
involves disagreement in the first round. In the appendix, we prove that the set {� : ∃t such

8 If �y > 1, then f (1) = 1 + y(1 − �) > 1 + 1
� (1 − �) = 1

� .
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Fig. 2. Extreme optimism (�y > 1). In this model, y = 2 and � lies between 1
2 and (1/3)1/2 as in Example 3. If

t is the date of the penultimate round, St+1 = 1 + y = 3 and hence, St = 3�. We use the phase map to iterate
the dynamic process and display the subgame perfect continuation values. Since S1 is greater than 1/�, there is
disagreement in the first round.

that S1(�, p, t) = S∗} is measure zero for each p and can therefore be excluded. Take t such
that S1(�, p, t) ∈ [1, 1

� ]\{S∗}. Now, note that G (�, p, t) is equivalent to the subgame after
the rejection of the first offer in G (�, p, t + 1). By backward induction, S1(�, p, t + 1) =
1 + y − �yS1(�, p, t). If S1(�, p, t + 1) > 1

� , the proof is complete. Otherwise, iteratively
repeat the inductive process (considering G(�, p, t + k) as a subgame in a larger game,
G(�, p, t + k + 1)) until a game G(�, p, t ′) is found such that S1 > 1

� . The existence of
such a game is established by Lemma 3: if there were no such game, then the set {s : ∃t ′ � t

such that S1(�, p, t ′) = s} would constitute an agreement-absorption set thereby leading
to a contradiction. �

Theorem 3 proves that we can construct arbitrarily long finite-horizon games that will
necessarily have delayed agreement on the equilibrium path if agents have extreme persistent
optimism. The intuition relies on Lemma 3: the unique agreement-absorption set is {S∗},
which is too “small” to guarantee immediate agreement for almost every (�, p).

We illustrate the above result with Fig. 2, where we examine the dynamics of the game
in Example 3. Here, we see that agreement is possible at t ∈ {1, 2, 4} but is impossible
initially at t = 0, as S1 is larger than 1

� . Unlike Fig. 1, the perceived surplus does not remain

within [1, 1
� ] × [1, 1

� ] leading to delay.
We have shown that it is necessary and sufficient that �y exceed 1 for there to be delay.

The intuition for this simple cut-off should be provided. If agreement is possible at period t,
the value of �y captures the impact of the perceived surplus in t +1 on the perceived surplus
in t. In the case of common priors, for example, �y is 0 and there is no impact whatsoever.
In contrast, for almost every positive value of �y, the perceived surplus naturally fluctuates
between successive periods: if St+1 is low, the rents from agreement at t are high thereby
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leading to a high St . The magnitude of these fluctuations depend on �y. For �y in (0, 1], the
impact of tomorrow’s surplus on that today is sufficiently small for the dynamic process to
stabilize to a point in the agreement regime, rendering immediate agreement in sufficiently
long games. However, when �y exceeds 1, variations in the perceived surplus tomorrow
have an even greater impact today: this instability creates the possibility for delay in some
preceding periods since an inherently unstable process cannot remain bounded by

[
1, 1

�

]
.

Note that for �y to be greater than 1,
∑

i∈N pi must be greater than �+1
� (which is greater

than 2); on average, agents must be at least twice as optimistic as they would be had they
shared a common-prior, and thus are extremely optimistic.

As the following example shows, for delay to emerge, it is not necessary that optimism
be persistent. In particular, even if agents disagree over the process for only a few initial
periods, delay is guaranteed. As such, this illustrates that these bargaining delays do not
necessarily emerge from huge rents from agreement at the final round, but that each period
within an agreement-regime may induce delay in some preceding period.

As the following examples involve non-stationary beliefs, let pt
i represent the belief agent

i has at all time periods s� t that she will be recognized at t. Let yt denote the associated
optimism.

Example 5. Let T = {0, . . . , t̄}. For t ∈ {0, 1}, let agents be extremely optimistic where
�yt > 1. For all subsequent periods, t ∈ {2, . . . , t̄}, let agents have common priors where
pt

i = pi , and
∑

i∈N pi = 1. Then, for all t > 1, the reader can verify that V t
i = pt

i , and
so St = 1. It then follows that V 1

i = p1
i (1 − �) + �pi , and S1 = (1 + y)(1 − �) + � =

1 + y1(1 − �) which is greater than 1
� . This precludes agreement in the first round.

The reader can verify that our example can be generalized: delayed agreement is possible
so long as there is excessive optimism over the bargaining process in the first few rounds.
Hence, even if agents come to agree over the bargaining process once they have seen
sufficiently many rounds of bargaining, the initial disagreement over recognition suffices
to induce delay.

The following result illustrates that the converse is also true: if agents have initial agree-
ment over the bargaining process but conflicting expectations in the future, the game ends
in immediate agreement.

Example 6. Let T = {0, . . . , t̄}, and let t ′ ∈ [1, t̄). Let the agents begin the game with
common priors: y0 = 0. For t � t ′, let yt < 1

� , and for t > t ′, let yt > 1
� . Moreover,

let there be t̂ � t ′ such that St̂+1 � 1
� . Then the reader can verify that S1 < 1

� and there is
immediate agreement.

The preceding two examples illustrate the importance of initial optimism. Initial optimism
over recognition can create delay even in the presence of future agreement. Similarly, if
agents have agreement over the bargaining process for sufficiently many initial rounds, the
game is guaranteed to end in immediate agreement.

We have shown that multilateral bargaining can generate delays. We proceed to examine
bargaining dynamics and the costs of delay.
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Fig. 3. Bargaining dynamics.

3.1. Bargaining dynamics: Cyclic agreement

Since each subgame after an offer is rejected is isomorphic to a shorter game, Theorem
3 establishes that there are multiple cycles between agreement and disagreement regimes
in a long game. This “cycling behavior” may be illustrated using parameters from
Example 3.

Example 7. Consider G(�, p.51) such that (�, p) are as in Example 3. Then agreement
is delayed until t = 1; moreover, agreement is attained at every t ∈ {1, 3, 5, . . . , 47, 48},
and impossible at t = {0, 2, 4, . . . , 46, 49}. We illustrate these dynamics in Fig. 3 where
we plot St and t.

The cycling behavior emerges, as we discussed in the Introduction, from there being
multiple moments that are ripe for agreement. In this example, each agreement regime
offers the proposer such high rents from agreement that excessive optimism prevents agents
from reaching agreement in the preceding round. Since delay in the preceding period is
then common knowledge, and delay is very costly, agents are able to agree to a bargaining
division two periods before. As such, there is agreement in every alternate period.

This sort of cycling phenomenon is general and is established by Theorem 1. However,
it is difficult to calculate the periodicity of the cycles (though the length of delay can be
bounded). Here, we show that for a certain class of parameters, in every sufficiently long
game, the outcome will alternate between agreement and disagreement regimes.

Let P = 1+y

1+�2
y

, and let Q = �(1+y)

1+�2
y

, and note that P > 1
� , Q < 1

� , �(P ) = Q and

�(Q) = P . Thus, {P, Q} is an orbit with periodicity 2.
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Proposition 1. For almost every (�, p) such that y ∈ ( 1
� , 1

�2 ), and for every ε > 0, there

existT < ∞ such that for all t > T , |S0 (�, p, t)−P |+|S1(�, p, t)−Q|�ε or |S0(�, p, t)−
Q| + |S1(�, p, t) − P |�ε.

The intuition for this is straightforward. When y lies in
(

1
� , 1

�2

)
, the set of periodic points

is {S∗, P , Q} where S∗ is a fixed point and P and Q are points with periodicity 2. However,
by Lemma 3, {S∗} is unstable and therefore cannot be the limit of continuation values.
However, as we show in the appendix, the orbit {P, Q} is stable and globally attracting.
Thus, with repeated iteration of �2 in sufficiently long games, {S0, S1} converges to this
orbit. We illustrate these dynamics in Fig. 4.

For higher values of y, the mapping � seems to exhibit the period doubling route to
chaos. 9 If y is greater than 1

�2 , P and Q are no longer stable periodic points. Though we do
not have a precise characterization of the dynamics in this case, numerical simulations point
us towards a general conjecture. Define yn = inf{y�0 : � has a point with periodicity
n where n is some integer}. 10 To illustrate y1 = 0 and y2 = 1

� . It appears that yn �yn+1
and that as y ∈ (yn, yn+1), a stable orbit with periodicity n appears, but all orbits with
lower periodicity become unstable. Therefore, if the equilibrium sequence converges, it
converges to this stable orbit with periodicity n. We conjecture that this phenomenon is
general: the orbit n is stable if and only if y lies between (yn, yn+1) for a fixed �. Hence,
for high values of y, the cycles may converge to orbits of particularly high periodicity, and
as y is arbitrarily large, the game appears chaotic.

The unstable dynamics may seem to be an indictment of our equilibrium: backward induc-
tion in these games, seemingly, relies on implausibly high orders of sequential rationality.
While it is certainly implausible that human beings play these subgame perfect equilibria in
a literal fashion (this criticism is equally valid in other long dynamic games), we believe that
the game and the cycling of agreement and disagreement regimes provide a useful metaphor
for stalemates and ripe moments for agreement. Moreover, we find the multiple transitions
between agreement and delay to be characteristic of real-world bargaining where delay and
disagreement rear their ugly heads ever so often.

3.2. Costs of delay

The potential for delay is greatest in the rounds near the end of the game, if agreement
has not already been reached. Immediately preceding the final round, each optimistic agent
expects to capture the entire surplus at the final round while bearing little in the way of
time costs. These huge rents at the last round causally lead to disagreement in preceding
rounds: if � is greater than 1

1+y
, and the end of the game is sufficiently close, agents may

choose to wait to capture the entire pie in the last round. This delay in the disagreement

regime is large: in particular, the delay is as long as

[
log(1+y)

log( 1
� )

]
− 1 (which we denote as

9 See Robinson [14, Chapter 3].
10 It is not clear that yn is even defined for all integers n.
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Fig. 4. 2-period cycles. The above two figures illustrate the dynamics when y lies between 1/� and 1/�2. The
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�2(x) illustrates Proposition 2. As we iterate �2 on the points X and Z, the process converges to Q and P. This
shows that P and Q are attracting points, and hence, in longer games, the perceived surpluses generated on the
equilibrium path converge to these two points.

L(�, p)) and entails an efficiency loss, 1 − �L(�,p) ∈ [�(1+y)−1
�(1+y)

,
y

1+y
). 11 Thus, in the

continuous-time limit, upto n−1
n

shares of the pie may be lost if agents had to bargain in
this final disagreement regime.

In long games—G(�, p, t) where t is greater than L(�, p) + 2— the length of the game
exceeds that of the disagreement regime near the end of the game. Faced with the prospect
of a long disagreement regime, in a sufficiently long game, agents will be able to agree in

11 The [·] operator finds the smallest integer that is greater than or equal to its argument.
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some period before being locked into disagreement until the end. If �y is less than 1, then
by Theorem 2, this implies immediate agreement yielding full efficiency. However, if �y

is greater than 1, agreement may be delayed. In this section, we examine the efficiency
properties of long games with extreme optimism.

While it is impossible to calculate an exact bound for the efficiency loss, we characterize
a fairly tight bound, and examine its implications.

Proposition 2. Consider G(�, p, t) such that t �L (�, p) + 2. Then, the settlement-time,
�(�, p, t) is bounded above by E(�, p) = max{[ log(1+y−y�)

log( 1
� )

]−1, 0}. The maximal efficiency

loss is bounded above by 1 − �E(�,p) and this bound lies in the set, [ �(1+y−y�)−1
�(1+y−y�)

,
y(1−�)

1+y−y� ].

Using E(�, p), we are able to examine the continuous-time limit of G(�, p, t) where
offers are made frequently.

Theorem 4. For every p and for every ε > 0, there exist �̄ < 1 such that for all � > �̄, and
t �L(�, p) + 2, the loss of efficiency in G(�, p, t), 1 − ��(�,p,t) < ε.

This result shows that an important implication of the Immediate Agreement Theorem
generalizes to all multilateral environments: if offers are frequent, persistent optimism
cannot explain inefficient delay. One would need to appeal to changing beliefs (as in
[17]) to create substantial delays that remain in the continuous-time limit, regardless of the
number of agents.

At high values of �, bargaining power is changing very rapidly; as such, recognition offers
little in way of a “temporal monopoly.” Recognition offers tremendous bargaining power
when offers are less frequent; thus for low values of �, optimism can result in extremely
costly delays, even in long games. The actual cost of delay is very sensitive to the parameters
of the game. We present results from numerical simulations to illustrate this dependence
on �. For expository reasons, we consider games where pi = pj for all agents i, j ∈ N ,
and abusing notation we denote the game as G(�, pi, |N |, t).

Game Delay Cost of delay

G(0.9, 0.9, 3, 52) 1 0.1
G(0.9, 0.9, 6, 51) 3 0.27
G(0.8, 0.9, 7, 52) 3 0.49
G(0.7, 1, 10, 51) 2 0.51

Game Delay Cost of delay

G(0.7, 0.9, 3, 52) 1 0.3
G(0.25, 0.9, 6, 52) 1 0.75
G(0.2, 0.9, 7, 52) 1 0.8
G(0.12, 1, 10, 52) 1 0.88

As such, optimism can create costly delays in bargaining. Much of the cost of delay
emerges from the time between offers: in many of the games above, there is only one period
of delay, but that delay is sufficiently costly.

4. Optimism in the infinite-horizon

In this section, we examine plausible equilibria in the infinite-horizon. As mentioned
in Remark 5, any division of the dollar in the infinite horizon can be supported as an
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SPE. This indeterminacy compels us to select a particular equilibrium. It has been stan-
dard within the bargaining literature to focus on the class of stationary equilibria citing
history-independence as a motivation. In the standard multilateral bargaining game, the
stationary equilibrium is the unique history-independent SPE outcome, and that equiva-
lence holds in the game with moderately optimism. However, extreme optimism breaks the
equivalence: the multilateral bargaining game with extreme optimism has a continuum of
history-independent equilibria, a subset of which involves delay and Pareto-dominates the
stationary equilibrium.

Before analyzing the game, we should briefly discuss the motivation for each solution
concept. History-independent equilibria (henceforth HIE) are SPE profiles where actions
are not conditioned on past play, but may be conditioned on the calendar date. History-
independence captures the desideratum of anonymity and simplicity where agents are unable
to reward or punish any actions in the past. This removes the multiplicity of SPE where
every division of the surplus can be enforced. Stationary equilibria (henceforth SSPE) are
HIE where actions are identical in every equivalent subgame and are usually motivated as
being the class of simplest strategies. 12 The motivation for stationarity depends crucially on
payoffs: if all agents benefit from using non-stationary strategies, a modeler has few grounds
to preclude such strategies. However, such a discussion is moot if the two solution-concepts
are payoff-equivalent.

To proceed, we define our solution concepts informally. The past history at each stage
consists of the identity of previous proposers, their proposals, and the votes of each voter
at each previous stage. We define the current history as the standing offer (if there is any)
and the sequence of votes on the current offer (if there are any). A strategy profile is a
HIE if the action prescribed at any history depends exclusively on the current history and a
time-specific state variable, and the strategy profile is subgame perfect. A strategy-profile
is a SSPE if it is an HIE and the action prescribed at any history depends only on the current
history.

We begin by establishing the existence of the SSPE and its uniqueness. The SSPE involves
immediate agreement in every game.

Theorem 5. For every (�, p), G (�, p, ∞) has a unique SSPE outcome. In this equilibrium,
all agents agree immediately, and for each t, St = S∗ = 1+y

1+�y
, and V t

i = pi

1+�y
.

We now characterize the set of HIE.

Theorem 6. For every (�, p) such that �y < 1, G (�, p, ∞) has a unique HIE outcome
which coincides with the SSPE outcome. For every (�, p) such that �y�1, and for every
t ∈ T , G(�, p, ∞) has an HIE where St = S if and only if S ∈ [1, 1 + y − �y].

The above theorem establishes that in almost every game of moderate optimism—and
including when agents share common priors—the unique history-independent equilibrium
is stationary, but in all games of extreme optimism, there is a continuum of non-stationary
history-independent equilibria, some of which have delayed agreement. By emphasizing

12 See, for example, [4].
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this divergence, we wish to make clear that the full efficiency and stability properties of the
SSPE do not emerge simply from history-independence, but require stationarity if agents
are extremely optimistic. In the finite-horizon game in Section 3, the distinction between
moderate optimism and extreme optimism was crucial in determining if arbitrarily long
games ended in immediate agreement or had delay. It is not coincidental that the equivalence
between HIE and SSPE rests on virtually the same knife edge and we should clarify this
relationship.

Examining the game with moderate optimism, Lemma 2 establishes that
[
1, 1

�

]
is an

agreement-absorption set. Hence, agreement at any period implies agreement at every
preceding period. Therefore, disagreement at any round of an HIE necessitates perpetual
disagreement thereafter, which contradicts subgame perfection. This insight establishes
that an HIE involves agreement at every round, and since the stationary solution is the
only strategy-profile that involves agreement at infinitely many periods when �y < 1, the
equivalence follows. When �y = 1, there is a continuum of HIE but each HIE ends in
immediate agreement.

In the game where �y > 1, on the other hand,
[
1, 1

�

]
is not an agreement-absorption

set, and disagreement at any round of an HIE can be supported by future agreement. This
allows us to generate a large set of HIE using each perceived surplus that lies in the set[
1, 1 + y − �y

]
, some of which involve delayed agreement. However, the set of HIE is

still small relative to that of SPE: as Lemma 13 in the appendix establishes, the space of
HIE perceived surpluses at any particular date is a 1-dimensional manifold. Nevertheless,
the SSPE is special relative to the set of HIE when it comes to its efficiency properties; to
wit, it is the only HIE where agreement is guaranteed in every round, on and off the path of
play.

Theorem 7. For every (�, p) such that �y > 1, the unique HIE of G(�, p, ∞) where there
is agreement at every t ∈ T is the SSPE.

While many of the HIE are highly non-stationary and complex, neither multiplicity nor
delay is rooted in extreme complexity. In particular, if actions can be conditioned upon
simply whether the period is odd or even, there exist multiple equilibria as the following
example illustrates. The construction of this equilibrium relies on P and Q, the points of
periodicity 2 identified in Section 3.1.

Example 8. Consider G(�, p, ∞) such that �y > 1 and let agents condition their strategies
at time t on whether t is odd. We verify that the following is an SPE outcome: at every odd

date, agent i is recognized, she offers each agent j an amount
�2

pj

1+�2
y

and this is accepted by

each agent; at every other date, she offers any offer that leaves her with at least �pi

1+�2
y

, and

this offer is rejected. By backward induction, at odd dates t, V t
i = pi(1 − �2

(1+y)

1+�2
y

) + �2
pi

1+�2
y

= pi

1+�2
y

and St = 1+y

1+�2
y

which is greater than 1
� . Hence, at every even date, there must

be delay. Therefore, at any even date �, V �
i = �pi

1+�2
y

, which is consistent with equilibrium

strategies. Since t = 0 is “even,” the SPE involves disagreement in the first round.
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Though the stationary equilibrium is undeniably the simplest HIE, this example shows
that there are other equilibria that are almost as simple and yet involve delay.

As we argued earlier, the motivation for stationarity is connected to its payoffs: complex
non-stationary strategies should not be precluded if they guarantee higher payoffs. Such
an argument can indeed be made for non-stationary HIE: we show that the set of HIE
outcomes can be ex ante Pareto-ranked and the stationary equilibrium is Pareto-inferior to
a continuum of HIE. Within a game, G(�, p, ∞), we define St (�) as the perceived surplus
at date t if the history-independent strategy profile is �, and V t

i (�) as the corresponding
perceived continuation value.

Proposition 3. Consider G(�, p, ∞) such that �y > 1. Then the set of HIE outcomes can
be ranked by the ex ante Pareto criterion: for any history-independent equilibria, � and �′,
S0(�) > S0(�′) ⇔ V 0

i (�) > V 0
i (�′) for each i ∈ N .

Since individual payoffs are monotonic in St , it follows that the SSPE is Pareto-dominated
by any history-independent � where S0(�) >

1+y

1+�y
. The Pareto-dominant solution in

particular is any HIE where S0 = 1 + y − �y. Moreover, it can be shown that if y exceeds
1+

√
1+4�2

2�2 , then a history-independent equilibrium with delay can also Pareto-dominate the
SSPE. This casts doubt upon the stationary solution: each agent would find it beneficial
to play a more complex strategy. Even amongst the history-independent equilibria where
agents condition on odd or even dates, there is a non-stationary equilibrium that is Pareto-
superior to the stationary solution; hence, even slight non-stationarity can create ex ante
Pareto gains. 13

This leaves the question of predicting infinite-horizon behavior unsolved: while history-
independence is too weak to serve as a refinement, stationarity may be too strong. We
do not intend to suggest that this is the only setting where the SSPE and HIE diverge, but
simply that such a divergence makes selecting a unique equilibrium controversial.

5. Alternative voting rules

So far, we have looked at the unanimity voting rule. In a variety of political institu-
tions, the dominant form of multilateral bargaining involves a majority or super-majority
voting rule. Though political institutions do have features that resemble proposal-voting
structures, they do not possess stochastic recognition mechanisms with objectively known
distributions. Moreover, as an environment where posture is critical and excessive optimism
is conceivable, legislative bargaining is a natural application of bargaining with heteroge-
neous priors. Thus, we briefly examine bargaining outcomes with general voting rules and

13 It also follows from Theorem 3 that if agents are extremely optimistic, the SSPE is not the limit of SPE of
finite truncations. Moreover, if y ∈ ( 1

� , 1
�2 ), by Proposition 1, the payoffs of the “alternating” equilibrium of

Example 8 provide a limit for those of the SPE of finite truncations (with the appropriate metric). However, it is
not clear that continuity at infinity is a desideratum. See [15].
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show that in the presence of optimism, the majority-rule is the least likely to cause delay in
the class of threshold voting rules.

In the spirit of Baron and Ferejohn [3], we consider symmetric equilibria of symmetric
games. 14 Each agent believes that she shall be recognized with probability p = 1+y

n
where

y lies in [0, n − 1]. When choosing coalitions, each agent randomizes uniformly between
all agents of the same continuation value. We consider all quota voting rules where the
acceptance of an offer requires the agreement of m agents (including the proposer) where
n
2 �m�n. We define the rest of the extensive form as before. We define such a game as
G(�, n, m, p, �), and the reader should note that these games have unique symmetric SPE
in the finite-horizon.

The following result is an extension of our approach in the unanimity game.

Proposition 4. For (�, n, p, m) where �y� n−1
m−1 , then there exists � < ∞, such that

for all t ��, G(�, n, m, p, t) ends in immediate agreement. Generically, for (�, n, p, m)

where �y > n−1
m−1 , there are countably infinite sets, T and T ′ such that for all � ∈ T A,

G(�, n, m, p, �) ends in immediate agreement, and for all � ∈ T ′, G(�, n, m, p, �) has
disagreement in the first round.

Recall that with a unanimity rule, we are ensured immediate agreement in all sufficiently
long games so long as �y is less than 1. Therefore disagreement necessitates that agents
be at least twice as optimistic as if they shared a common prior. However, if we have a
majority-voting rule ( n−1

m−1 = 2), then we have immediate agreement in all sufficiently long
games so long as �y is less than 2. Disagreement in any long game would therefore require
that p� 2

�n
+ 1

n
> 3( 1

n
), or agents be more than three times as optimistic as if they shared

a common prior. Hence, by weakening the voting rule, we provide greater possibility for
immediate agreement.

Therefore, in legislative bargaining games with optimism, the likelihood of delay with
majority-voting rules may be less than with unanimity voting rules (if the symmetric
equilibria are implemented). This draws a contrast to the research on bargaining with
a stochastic surplus (with a commonly known distribution). In that environment, the una-
nimity rule implements the optimal stopping rule, but as Eraslan and Merlo [6] estab-
lish, the possibility of exclusion from the winning coalition drives agents to agree too
quickly in a majority-voting rule. Within our framework, the threat of exclusion from fu-
ture coalitions has an identical effect: it compels agents to mitigate their disagreements
over bargaining shares, and accept smaller bargaining shares today, resulting in earlier
agreement. Since the bargaining surplus is constant, this undoubtedly enhances efficiency.
Coalition-formation, thus, is a double-edged sword in a world of political uncertainty and
disagreement.

14 This restriction simplifies our analysis, but is not without loss of generality: as Norman [10] shows, the
symmetric game has many asymmetric equilibria with differing continuation payoffs, and asymmetric games have
a unique asymmetric equilibrium.
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6. Conclusion

We have examined agreement and disagreement in multilateral bargaining games. We
have seen that the immediate agreement theorem does not hold for excessively optimistic
players, and that delay in bargaining games may be explained by subjective biases once
we have at least 3 agents. If offers are frequent, this generates a small efficiency loss
and hence, the efficiency implications of the Immediate Agreement Theorem remain in the
continuous-time limit. However, if there are significant time-costs, optimism can create
costly bargaining delays in arbitrarily long games.

Our model suggests that when bargaining is over a finite time-horizon and delay is costly,
optimism over the bargaining process will foster bargaining delay. Insofar as rational
agents may agree to disagree, the bargaining delay that we identify need not be rooted in
irrationality. However, as experimental evidence corroborates the prevalence of optimism,
self-serving biases, and the use of imprecise heuristics to form subjective beliefs, there are
reasons beyond rational disagreement to expect conflicting views over bargaining power.
Our model suggests a strong causal connection between this collective optimism and delayed
agreement.

The bargaining protocol that we have studied in this paper is one where each agent
has veto power over all offers, and can thereby restrict the payoff of any other agent. As
such, no partial agreements are possible. This protocol is natural in those contexts where
unanimous agreement is necessary before the surplus may be divided and agents have
decision-rights over its distribution. In other settings, it may be more plausible to allow for
partial offers and agreement. It would be useful to understand the impact of optimism on
such bargaining protocols and examine whether there is any detail-free efficient procedure
when agents disagree over the distribution of bargaining power; this task is left to future
research.

A theoretical implication of this paper is that once we allow for extreme optimism, the sta-
tionary equilibrium in the infinite-horizon is truly a knife-edge equilibrium. We have shown
that allowing for even a small “amount” of memory allows for multiple equilibria in the
infinite-horizon, all of which need not have immediate-agreement. For behavioral predic-
tions, an equilibrium refinement is necessary, but our analysis of the stationary equilibrium
calls into question whether it is the right refinement.

Our paper is not the only transferable utility stochastic bargaining model to emerge with
delay. Merlo and Wilson [9] analyze a multilateral bargaining game where the surplus and
recognition are stochastic but where agents agree over the distribution of the stochastic
process. It finds that the unique stationary equilibrium may involve delayed agreement but
such delays are necessarily Pareto-efficient as the unanimity rule implements the optimal
stopping-time. 15 Cripps [5] analyzes a similar bilateral bargaining game where the surplus
is stochastic but the buyer and seller may have different levels of patience. This creates
a disagreement between the agents about the optimal stopping time and interestingly, this
disagreement leads to inefficient subgame perfect equilibria. Ponsati and Sakovics [12]
analyze a stochastic model of bilateral bargaining where the availability of outside options

15 In Merlo and Wilson [8], it is shown that this result does not extend to NTU games; they present an example
where the unique stationary equilibrium outcome is inefficient.
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is random, and finds that when the outside-options are moderate, agents can use the credible
threat of taking an outside-option to generate a continuum of subgame perfect equilibrium
outcomes. The possibility for delay arises in their model but only for particular parameters
is this delay inefficient. As such, all these papers have convincingly shown that bargaining
in a stochastic environment may be inefficient. Our paper provides one particular stochastic
model of bargaining where efficiency is guaranteed if agents agree over the distribution of
the stochastic process, but is lost when there is excessive disagreement.
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Appendix A. Omitted Proofs

Proof of Lemma 1. Consider X, an agreement-absorption set, and � such thatS1 (�, p, �) ∈
X, and denote x = S1 (�, p, �). For all t > �, the game G(�, p, �) is equivalent to the
subgame in G (�, p, t) where the offers in the first t − � periods have been rejected. Hence,
S1+t−�(�, p, t) = x ∈ [1, 1

� ]. Therefore, by induction, S1(�, p, t) = f t−�(x) ∈ X ⊆
[1, 1

� ], and G(�, p, t) ends in immediate agreement. �

Proof of Theorem 1. This is an immediate extension of Theorem 2 in [16]. It suffices to
show that for any �, we can find t �� such that S1(�, p, t) ∈ [

1, 1
�

]
. Take any � ∈ N+ and

consider G(�, p, �). If S1(�, p, �) ∈ [1, 1
� ], the proof is complete. If S1(�, p, �) > 1

� , note
that the subgame following the rejection of the first-offer of G(�, p, � + 1) is isomorphic
to G (�, p, �). Since S2(�, p, � + 1) = S1(�, p, �) > 1

� , we calculate S1(�, p, � + 1) =
�S2(�, p, � + 1) = �S1(�, p, �). By induction then, S1(�, p, t) = �t−�S1(�, p, �) if
S1(�, p, t̂) > 1

� for each t̂ ∈ (�, t) ∩ N. Since S1(�, p, �) is finite, and � < 1, we are

guaranteed agreement in G(�, p, t) for some t > � + log S1(�,p,t)

log(�)
− 1. �

Proof of Theorem 3. Here we show that the set {(�, p) where �y>1 : ∃t where S1 (�, p, t)

= S∗(�, p)} has measure 0. Pick a fixed t < ∞. Note that St−1(�, p, t) = 1+y �= S∗(�, p)

for all (�, p) where �y > 1. S1(�, p, t) = �t−2(1 + y(p)) is a polynomial in �, y, and t,
and the set

{
� : S1(�, p, t) − S∗(�, p, t) = 0

}
is, at most, countable for each t. Therefore,

∪t∈N+{� : S1(�, p, t) − S∗(�, p, t) = 0} is countable and has Lebesgue measure 0. �
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Proof of Proposition 1. By iterating �, we can summarize

�2(x) =

�2x if x >
1

�2 ,

1 + y − �2yx if
1

�
< x� 1

�2 ,

(1 + y)(1 − �y) + �2y2x if
�(1 + y) − 1

�2y
< x� 1

�
,

�(1 + y − �yx) if 1�x� �(1 + y) − 1

�2y
.

(A.1)

We restrict attention to (�, p) ∈ D = {(�, p) : y ∈ ( 1
� , 1

�2 )}. It can be verified that the

set of fixed points of �2 is {S∗, P , Q} where P = 1+y

1+�2
y

∈ [ 1
� , 1

�2 ], and Q = �(1+y)

1+�2
y

∈
[1,

�(1+y)−1
�2

y
]. We prove the proposition through a series of results. We first show that for

any point x ∈ [1, S∗), limn→∞ �2n(x) = Q. Then we proceed to show that for almost
every x ∈ [1, ∞), there exists k such that �k(x) lies in [1, S∗), and hence, for some k,
limn→∞ �2n+k(x) = Q. This allows us to prove the proposition.

Lemma 4. For every x ∈ [1, S∗), and for each ε > 0, there exists N < ∞ such that for

all n > N,

∣∣∣�2n(x) − Q

∣∣∣ < ε.

Proof. We first show that x ∈ [1,
�(1+y)−1

�2
y

] ⇒ �2(x) ∈ [1,
�(1+y)−1

�2
y

]. Pick an arbitrary x.

Since �2 is decreasing on this part of the domain, �2(x)��2(1) = �(1 + y − �y). It can
be directly verified that �2(1) = �(1+y)−1

�2
y

+ (1−�)(�2y −1)(�y −1) <
�(1+y)−1

�2
y

. Hence,

�2([1,
�(1+y)−1

�2
y

]) ⊂ [1,
�(1+y)−1

�2
y

]. Furthermore, for x ∈ [1,
�(1+y)−1

�2
y

], we can show that

|�2(x)−Q| = (�2y)|x−Q| < |x−Q|. We can then prove by induction that |�2n(x)−Q| =
(�2y)n|x − Q| for every integer n. Therefore, for every n > [ log ε−log(|x−Q|)

log(�2
y)

] 16 we obtain

|�2N(x) − Q| < ε.
Now consider x ∈ (

�(1+y)−1
�2

y
, S∗). Since �2 is increasing on this restricted domain,

�2(x) < �2(S∗) = S∗. Moreover, it can be shown that |�2(x)− S∗| = (�2y2)|x − S∗|, or
�2(x) = x − (�2y2 − 1)(S∗ − x) and hence �2(x) < x for all x. By induction then, for all
integers n where �2n−2(x) ∈ [ �(1+y)−1

�2
y

, S∗), we have |�2n(x) − S∗| = (�2y2)n|x − S∗|.

Therefore, for N = [ log(| �(1+y)−1
�2y

−S∗|)−log(|x−S∗|)
2 log(�y)

], it is true that �2N(x)� �(1+y)−1
�2

y
. By

applying the argument above, if we choose any n > N + [ log ε−log(| �(1+y)−1
�2y

−Q|)
log(�2

y)
], then

|�2n(x) − Q| < ε. �

16 [·] is the operator that finds the smallest integer greater than or equal to its argument.
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With an abuse of notation, for any function g : � → �, we define the set-valued function
g on all subsets of � where for A ∈ 2�, g[A] = {x ∈ � : ∃a ∈ A such that g(a) = x}.

Lemma 5. Consider the infinite sequence of sets, {Xi}∞i=0 where X0 = [1, S∗) and for

i�1, Xi = ( S∗
�i−1 , S∗

�i ). Then for i > 1, �[Xi] ⊆ Xi−1.

Proof. For i�2, x lies in Xi implies that x > 1
� . Hence �(x) = �x ∈ Xi−1. For i = 1,

consider X1 = (S∗, 1
� ] ∪ [ 1

� , S∗
� ). It can be verified that �[(S∗, 1

� ]] = �[[ 1
� , S∗

� )] =
[1, S∗) = X0. �

For each x ∈ ∪∞
i=0 Xi , let i(x) = {i ∈ N : x ∈ Xi}. The following result shows that

for each point within this infinite sequence of sets, there is a subsequence of iterates that
converge to Q.

Lemma 6. For each x ∈ ∪∞
i=0 Xi , for each ε > 0, there exists N such that for all n > N ,

|�2n+i(x)(x) − Q| < ε.

Proof. Since x ∈ Xi(x), by induction, it can be shown that �i[Xi] ⊂ X0, and hence
�i(x)(x) ∈ X0. By Lemma 4, for each ε > 0, there exists N < ∞ such that for all n > N ,∣∣∣�2n(�i(x)(x)) − Q

∣∣∣ = |�2n+i(x) − Q| < ε. �

Lemma 7. For each x ∈ ∪∞
i=0Xi , for each ε > 0, there exists N < ∞ such that for

all n > N ,
∣∣∣�2n+i(x)(x) − Q

∣∣∣ +
∣∣∣�2n+i(x)+1(x) − P

∣∣∣ < ε, and
∣∣∣�2n+i(x)(x) − Q

∣∣∣ +∣∣∣�2n+i(x)−1(x) − P

∣∣∣ < ε.

Proof. By Lemma 6, for each ε > 0, there exists N < ∞ such that for all n > N ,∣∣∣�2n+i(x)(x) − Q

∣∣∣ < ε
2y

< ε
2 . It can be verified that

∣∣∣�2n+i(x)+1(x) − P

∣∣∣ = |�(�2n+i(x)

(x)) − �(Q)| = (�y)

∣∣∣�2n+i(x)(x) − Q

∣∣∣ < �ε
2 < ε

2 . Therefore,
∣∣∣�2n+i(x)(x) − Q

∣∣∣ +∣∣∣�2n+i(x)+1(x) − P

∣∣∣ < ε. Moreover,
∣∣∣�2n+i(x)−1(x) − P

∣∣∣ � 1
�

∣∣∣�2n+i(x)(x) − Q

∣∣∣ < ε
2�y

< ε
2 , and hence

∣∣∣�2n+i(x)(x) − Q

∣∣∣ +
∣∣∣�2n+i(x)−1(x) − P

∣∣∣ < ε. �

We now use Lemma 7 to prove the proposition. We first restrict our analysis to the set
D̃ = {(�, p) ∈ D : ∀t ∈ N, 1 + y �= S∗

�t }.

Lemma 8. For each (�, p) ∈ D̃, for each ε > 0, there exists T < ∞ such that for all
t > T , |S0(�, p, t)−P |+|S1(�, p, t)−Q| < ε or |S0(�, p, t)−P |+|S1 (�, p, t)−Q| < ε.

Proof. Pick any positive ε. Since 1 + y �= S∗
�t for each t ∈ N, it is established that 1 + y ∈

∪∞
i=0Xi . Let i(1 + y) = i. By Lemma 7, there exists N < ∞ such that for all n > N ,∣∣∣�2n+i (1 + y) − Q

∣∣∣+ ∣∣∣�2n+i+1(1 + y) − P

∣∣∣ < ε. Define T = 2(N +1)+ i. Picking any
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t > T , it is clear that S0(�, p, t) = �t−1(1 + y(p)), and S1(�, p, t) = �t−2(1 + y(p)).
If i mod 2 = t mod 2, then S0(�, p, t) = �t−1(1 + y(p)) = �2n+i+1(1 + y(p)) and
S1(�, p, t) = �t−2(1 + y(p)) = �2n+i (1 + y(p)) where n = t−i

2 − 1 ∈ N, and n > N .
Therefore |S0(�, p, t) − P | + |S1 (�, p, t) − Q| < ε. If i mod 2 = t mod 2 + 1, then
S0(�, p, t) = �t−1(1 + y(p)) = �2n+i (1 + y(p)) and S1(�, p, t) = �2n+i−1(1 + y(p))

where n = t−i−1
2 ∈ N, and n > N . Therefore |S0(�, p, t)−Q|+|S1 (�, p, t)−P | < ε. �

Lemma 9. The set D\D̃ has Lebesgue measure 0.

Proof. Note that (�, p) ∈ D\D̃ if and only if there exists t ∈ N such that 1 + y = S∗
�t .

Hence, for each p, the set {� : (�, p) ∈ D\D̃} = ∪t∈N+{� : �t + �t+1y = 1}, which is a
countable union of countable sets. D\D̃ is thus of Lebesgue measure 0. �

The proposition follows from the preceding lemmas.

Proof of Proposition 2. Consider T = {t ∈ N : t < �} as in the definition of the game
and restrict attention to all G(�, p, �) where �y > 1 and ��L (�, p) + 2.

Lemma 10. There is agreement at period � − L (�, p) − 2.

Proof. It suffices to show that S�−L(�,p)−1 � 1
� . Since S�−1 = 1+y > 1

� , we can recursively

construct the set D = {t ∈ T : t + 1 ∈ D ∪ {�} and St > 1
� }, which is the set of all dates

of disagreement regimes near the end of the game. For each t ∈ D, St = ��−1−t (1 + y).
Now t ∈ D implies that ��−1−t (1+y) > 1

� , and therefore (�− t) <
log(1+y)

log( 1
� )

�L(�, p)+1.

The conclusion then follows since � − L(�, p) − 1 /∈ D, and � − L(�, p) ∈ D. �

Lemma 11. St is bounded above by 1 + y − �y for all t �� − L (�, p) − 1.

Proof. We know that S�−L(�,p)−1 � 1
� < 1+y −�y so the bound holds for t = �−L(�, p)

− 1. By way of contradiction, consider t < � − L(�, p) − 1 where St > 1 + y − �y. Note
that St+1 ∈ [1, 1

� ] implies that St = f (x)�f (1) = 1 + y − �y. Hence, St > 1 + y − �y

implies that St+1 > 1
� . Therefore St+1 = 1

�St > 1
� (1 + y − �y) > 1 + y − �y. Then by

induction, for all t ′ ∈ {t, t + 1, . . . , � − 1}, St ′ > 1 + y − �y. Yet this is a contradiction
since � − L (�, p) − 1 ∈ {t, t + 1, . . . , � − 1} and S�−L(�,p)−1 < 1 + y − �y. �

It is straightforward to then calculate E(�, p). If S1 < 1
� , the game ends in immediate

agreement with full efficiency. If S1 > 1
� , then there is delay. Consider the set D1 = {t ∈

T \D : t �1 and St > 1
� and St+1 � 1

� }. Since 1�� − L (�, p) − 1, and S�−L(�,p)−1 � 1
� ,

D1 is non-empty. Let � = mint∈D1 t . By Lemma 11, S� �1 + y − �y, and therefore,
� < E(�, p). Hence, 1 − �� < 1 − �E(�,p). The reader can verify then that 1

1+y−�y
<

�E(�,p) � 1
�(1+y−�y)

, and hence, 1 − �E(�,p) ∈ [�(1+y−�y)−1
�(1+y−�y)

,
y(1−�)

1+y−�y
). �
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Proof of Theorem 4. Pick ε > 0. For all G (�, p, t) where t �L(�, p) + 2, the maximal
loss of efficiency is 1 − �E(�,p) that lies in the set [�(1+y−y�)−1

�(1+y−y�)
,

y(1−�)

1+y−y� ). Then for � >

1 − ε
y(1−ε)

, we can establish that 1 − ��(�,p,t) < 1 − �E(�,p) <
y(1−�)

1+y−y� < ε. �

Proof of Theorem 5. By stationarity, and since all subgames prior to recognition are iso-
morphic to each other, for all i and t, V t

i = V t+1
i . Thus, St = St+1. Since perpetual

disagreement is not an SPE outcome, St = �(St ) implies that St = S∗ = 1+y

1+y� , and

V t
i = pi

1+�y
. It is easy to confirm that the following is the essentially unique SSPE: if an

agent is recognized, she offers all other agents their discounted continuation values, and
other agents accept this offer and refuse anything less. �

Proof of Theorem 6. By definition, an SSPE is an HIE. For each i, let {V t
i }∞t=0 represent

i’s continuation value at each period in the game when the strategy-profile is � and for each
t, let St = ∑

i∈N V t
i .

Lemma 12. Consider (�, p) such that �y�1. Then for any HIE �, St ∈ [1, 1
� ] for all t.

Proof. Pick any arbitrary t. By definition of HIE, St = �(St+1) for each t. This implies
that St is at least 1. Since

[
1, 1

�

]
is an agreement-absorption set, if St > 1

� , then for all

� > t , it must be that S� > 1
� . However, this would entail perpetual disagreement after

period t , which is not an SPE outcome. Therefore, St ∈ [1, 1
� ] for all t. �

If �y = 0, then by the preceding lemma, St = 1 + y − �ySt+1 = 1, and therefore, for
each integer �, S� = 1. Therefore, V t

i = pi(1 − �) + �V t+1
i = ∑∞

�=0 ��pi(1 − �) = pi .
Hence, the HIE outcome is stationary.

If �y ∈ (0, 1). Consider a HIE and its induced perceived surplus, {St }∞t=0. If the HIE
is non-stationary, there exists date � where S� �= S∗. Since by the preceding lemma,
S�+1 ∈ [1, 1

� ], it must be true that S�+1 = f −1(S�) = 1+y−S�

�y
, where ε is some arbitrarily

small number. Then it can be shown by induction for all k > 0 that |S�+k − S∗| =
(�y)−k|S� − S∗|. Since �y < 1, for all k >

log(| 1
� −S∗|)−log(|S�−S∗|)

log( 1
�y

)
, it must be the case that

|S�+k −S∗| > | 1
� −S∗|. Pick a particular such k. If S�+k > S∗, this implies that S�+k > 1

� .
If S�+k < S∗, since f −1 is a decreasing function, this implies that S�+k+1 = f −1(S�+k) >

f −1(S∗) = S∗, and since |S�+k+1 −S∗| > (�y)−1|S�+k −S∗| > | 1
� −S∗|, it is established

that S�+k+1 > 1
� . In either case, this poses a contradiction to Lemma 12.

Now consider (�, p) such that �y�1. For x ∈ [1, 1 + y − �y], consider the corre-
spondence �−1(x) = {z : �(z) = x} ∩ [1, 1 + y − �y], and its upper-envelope, g(x) =
max

z∈�−1(x)
z.

We can now construct the equilibrium: let St = S, for all � ∈ {0, . . . , t − 1}, let S� =
�t−�(S), and for all � > t , let S� = g�−t (S). By construction, for all periods t, St =
�(St+1). Associate with each S� a vector {V �

1 , . . . , V �
n } where V �

i = pi

1+y
S�. Note that

if S�+1 < 1
� , then V �

i = pi

1+y
(1 + y − �yS�+1) = pi(1 − �S�+1) + �V �+1

i and that if
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S�+1 > 1
� , V �

i = pi

1+y
�S�+1 = �V �+1

i . Thus, the following is an HIE: if i is recognized at

time � and S�+1 < 1
� , she offers each agent j her continuation value, �V �+1

j , and j accepts

any proposal that offers her at least this continuation value. If S�+1 > 1
� , agent i makes

any proposal that does not leave her with less than �V �+1
i , and on the equilibrium path, this

offer is rejected. This completes the construction.
We now show that for every history-independent equilibrium, for every t, St ∈ [1, 1 +

y − �y]. Since perpetual disagreement can never be an equilibrium outcome following any
finite history, for every t, there exists t ′ > t such that St ′ ∈ [1, 1

� ]. Then it can be shown

by induction that St ��(1) = 1 + y − �y. If St+1 > 1
� , then St > �St+1 > 1, and if

St+1 < 1
� , then St > �( 1

� ) = 1. �

Proof of Theorem 7. Consider a history-independent equilibrium, �, and its induced per-
ceived surplus, {St (�)}∞t=0. If there is agreement at every round t, then the set {S : ∃t such
that S = St } is an agreement-absorption set. By Lemma 3, it must be that St (�) = S∗.
Hence, � is the SSPE. �

Proof of Proposition 3. We prove the following lemma.

Lemma 13. Consider any HIE � of G(�, p, ∞). Then for each t, and for each i ∈ N , we
have V t

i (�) = pi

1+y
St (�).

Proof. Define for each t, gt = ∑∞
i=t+1 �i−t (1 − �Si(�))1{Si(�)� 1

� }. Since � < 1, and for

each i, (1 − �Si(�))1{Si(�)� 1
� } �1, it is guaranteed that the limit exists. The result then

follows from recognizing that V t
i = pig

t . �

Proposition 3 follows immediately from Lemma 13: S0(�) > S0(�′) implies that for
each i ∈ N , V 0

i (�) > V 0
i (�′). The equivalence then follows since if for each i ∈ N ,

V 0
i (�) > V 0

i (�′), then S0(�) = ∑
i∈N V 0

i (�) >
∑

i∈N V 0
i (�′) = S0(�′). �

Section 5: We restrict n to be at least 3. We first characterize the difference equations
that govern continuation values. Since agents are symmetric, we can write for each agent
i, V t

i = V t . We define St = mV t .
As before, if St+1 > 1

� , then for an offer x to be accepted, it must be true for at least m
agents that xj ��V t+1, or x��St+1 > 1. Hence, all offers are infeasible and {St , V t } =
{�St+1, �V t+1}. If St+1 � 1

� , then V t = 1+y
n

(1−(m−1)�V t+1)+(1− 1+y
n

)(m−1
n−1 )�V t+1 =

1+y
n

− m−1
n−1 �yV t+1, and St = g(St+1) where g(x) = m

n
(1+y)− m−1

n−1 �yx. It may be verified

that on the equilibrium path, St may be less than 1, but St is at least g( 1
� ) = m

n
+ n−m

n(n−1)
y�1

since y�n − 1.

Proof of Proposition 4. Analogous to Theorem 1, we know that there exists a countably
infinite set T A such that for all t ∈ T A, G(�, n, m, p, t) ends in immediate agreement.
Hence, it suffices to show that if �y� n−1

m−1 , then x ∈ A = [g( 1
� ), 1

� ] implies g(x) ∈ A
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since this proves a version of the Immediate Agreement Theorem. Note that an important
difference here is that the lower bound of the set is g( 1

� )�1.

Since g is a decreasing function, for all x ∈ A, g(x)�g(g( 1
� )) = g2( 1

� ). It may be

verified by direct calculation that if y = n−1
�(m−1)

then g2( 1
� ) = 1

� . For all (�, y), con-

sider I (�, y) = g2( 1
� ), and h(�, y) = �

�y
I (�, y) = m

n
(1 − � (m−1)

(n−1)
) − 2�y

(n−m)(m−1)

n(n−1)2 .

Note that h(�, y) is decreasing in y, and therefore for y� n−1
�(m−1)

, h(�, y)�h(�, n−1
�(m−1)

) =
m
n
(1−� (m−1)

(n−1)
)− 2(n−m)

n(n−1)
. Since h(�, n−1

�(m−1)
) is decreasing in �, for each �, h(�, n−1

�(m−1)
) >

h(1, n−1
�(m−1)

) = (m−2)(n−m)
n(n−1)

�0. This establishes that h(�, y) > 0 for each (�, y) where

�y� n−1
m−1 . Since I (�, y) is continuous and differentiable in y, by the First Fundamental

Theorem of Calculus, this yields that for all y < n−1
�(m−1)

, we can calculate I (�, y) =
I (�, n−1

�(m−1)
) − ∫ n−1

�(m−1)
y h(�, t) dt < I (�, n−1

�(m−1)
) = 1

� . Therefore, if St+1 � 1
� , then

St �g2( 1
� ) < 1

� . Therefore, if �y� n−1
m−1 , all sufficiently long games end in immediate

agreement.
To prove that if �y > n−1

m−1 , that generically there are arbitrarily long games with de-
lay, by an analogous result to Theorem 3, it suffices to shows that the unique agreement-
absorption set is { m(n−1)(1+y)

n(n−1+�my−�y)
}, where m(n−1)(1+y)

n(n−1+�my−�y)
is the unique fixed point of g.

Assume by way of contradiction that there exists another agreement-absorption set A where
x ∈ A\{ m(n−1)(1+y)

n(n−1+�my−�y)
}. Then as �y > n−1

m−1 , we know that |g(x) − m(n−1)(1+y)

n(n−1+�my−�y)
| >

�|x− m(n−1)(1+y)

n(n−1+�my−�y)
| where � ∈ (1, m−1

n−1 �y), and by induction, |gt (x)− m(n−1)(1+y)

n(n−1+�my−�y)
| >

�t |x− m(n−1)(1+y)

n(n−1+�my−�y)
|. Therefore for sufficiently high t, we are guaranteed to findgt (x) > 1

� ,
and hence A is not an agreement-absorption set. �
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