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BARGAINING AND REPUTATION

BY DILIP ABREU AND FARUK GUL1

The paper develops a reputation based theory of bargaining. The idea is to investigate
and highlight the influence of bargaining ‘‘postures’’ on bargaining outcomes. A complete
information bargaining model a la Rubinstein is amended to accommodate ‘‘irrational`
types’’ who are obstinate, and indeed for tractability assumed to be completely inflexible
in their offers and demands. A strong ‘‘independence of procedures’’ result is derived:
after initial postures have been adopted, the bargaining outcome is independent of the
fine details of the bargaining protocol so long as both players have the opportunity to
make offers frequently. The latter analysis yields a unique continuous-time limit with a
war of attrition structure. In the continuous-time game, equilibrium is unique, and entails
delay, consequently inefficiency. The equilibrium outcome reflects the combined influence
of the rates of time preference of the players and the ex ante probabilities of different
irrational types. As the probability of irrationality goes to zero, delay and inefficiency
disappear; furthermore, if there is a rich set of types for both agents, the limit equilibrium
payoffs are inversely proportional to their rates of time preference.

KEYWORDS: War of attrition, delay, incomplete information, independence from proce-
dures, obstinate types.

1. INTRODUCTION

THIS PAPER ADDRESSES the following question. Two agents seek to divide some
surplus: to what division will they agree? Our approach is to emphasize the role
of reputation in the determination of this division.

Noncooperative bargaining theory in its current form has been deeply influ-
Ž .enced by the celebrated paper of Rubinstein 1982 , which has provided the

basic framework for an enormous and still growing literature. His paper pro-
vides a natural reference point for our own work. The only parameters in

ŽRubinstein’s complete information model are the players’ costs of waiting due
.to impatience, exogenous termination, etc. for their turn to make an offer.

These parameters determine a unique equilibrium.
Our theory replaces the impatience between offers of Rubinstein by uncer-

tainty about the strategic posture of one’s opponent. Following Kreps and Wilson
Ž . Ž .1982 and Milgrom and Roberts 1982 , we have ‘‘irrational’’ types where each
type is identified by a fixed offer and acceptance rule. While players are still
impatient, the driving force of the theory is the peripheral uncertainty about the

Ž .inflexible demand or rule of thumb, bargaining convention, et cetera with
which one’s opponent may be endowed, or more significantly, to which one’s
opponent may pretend.

1Abreu thanks the Russell Sage Foundation and Gul thanks the Alfred P. Sloan Foundation for
their generous support. Both authors gratefully acknowledge financial support from the National
Science Foundation.
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Ž .Rubinstein’s theory embraces both slight impatience frequent offers and
Ž .substantial discounting significant delay between offers. We view the former as

a salient case, as does much of the literature. Many of the remarks below must
be understood in this light and we will typically drop the qualifier ‘‘in the case of
frequent offers’’ when referring to Rubinstein’s results. From this perspective, a
first objection to the Rubinstein theory is that a ‘‘marginal’’ feature of the

Ž .problem slight impatience between offers completely determines the outcome.
ŽOf course, a similar objection may be leveled against our own theory i.e., slight

.irrationality . In a sense, noncooperative bargaining theory is quintessentially
about deriving a determinate division when a priori it is difficult to rule out any
of a range of possible divisions. In its purest form, it is precisely about
explaining the division of a residual surplus that remains after one has ac-
counted for market forces, outside options, and so on. Thus ‘‘perturbations’’ of
one sort or another would appear to be a natural ingredient of bargaining
theories.

The issue is then upon what kinds of perturbations does one want to build a
theory? We believe that ‘‘irrationality’’ provides a starting point that is perhaps
as worthy of attention as the prevailing Rubinstein paradigm based on impa-
tience. A point in favor of irrationality is that in a sequential process slight ex
ante irrationality can, as a result of observed behavior, become very likely, ex
post: it is precisely this fact that accounts for the magnitude of reputational
effects relative to the underlying uncertainty upon which they are premised.
Hence, we find it intuitively plausible that slight irrationality is an important
explanatory factor in sequential bargaining. We emphasize the case of slight ex
ante irrationality, in keeping with the tradition of the reputational literature.
One might also take the view that in many contexts the ex ante probability of
‘‘type’’ behavior is not vanishingly small. We note that many of our results are
independent of the magnitude of this ex ante probability.

At this point the reader might wonder how the current exercise relates to the
large literature on bargaining with asymmetric information.2 Our work, of
course, shares with this literature a departure from the assumption of complete
information. The cited papers are, however, concerned with uncertainty about
‘‘fundamentals,’’ in particular, the discount factor or the reservation values of
the bargainers. The motivation for our work is rather different in that we seek to
model uncertainty about the strategic intent or strategic posture of the oppo-
nent rather than uncertainty about such concrete factors as seller’s costs of
production or buyer’s valuations. Our model has two-sided incomplete informa-
tion, two-sided offers, and multiple types. The corresponding literature, with
asymmetric information about valuations, is not one upon which we have been
able to build. In these models, multiple equilibria and refinement arguments are
of the essence. These issues do not arise in our work. The last paragraph of the

2 Ž . Ž .See, for instance, Sobel and Takahashi 1983 , Cramton 1984 , Fudenberg, Levine, and Tirole
Ž . Ž . Ž . Ž .1985 , Rubinstein 1985 , Grossman and Perry 1986 , Gul, Sonnenschein, and Wilson 1986 ,

Ž . Ž .Chatterjee and Samuelson 1987 , Ausubel and Deneckere 1992 .
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Ž .introduction to which impatient readers might wish to immediately turn traces
in a connected way the many influences on our work, and records several
noteworthy prior contributions. See also Section 6 for further discussion.

We have modeled irrationality in an extremely simple way. An irrational type
always demands a particular share, accepts any offer greater or equal to that
share, and rejects all smaller offers. There are many possible types correspond-
ing to different inflexible demands. Agents discount the future at fixed rates
and, as usual, the structure of the problem, in particular the discount factors and
the probability distributions over irrational types are common knowledge.

Ž .We are primarily interested in bargaining games with irrational types and
frequent offers. The logical starting point of the analysis is the consideration of
discrete-time bargaining games and limit behavior in the latter as both players
are able to make offers more and more frequently. A central issue is whether
limit behavior depends upon precisely how one goes to the limit. In fact, we
show that a limit outcome exists and is uniquely defined independently of the
fine details of the bargaining protocol. The latter analysis is quite involved and
we defer it to Section 4.

Sections 2 and 3 deal with the analytically convenient and expositionally less
demanding continuous-time formulation. At time zero, each player picks a type
to mimic. After this initial choice of types, the defining feature of the continu-
ous-time game is the identification of revealing rationality with conceding to the
other player’s irrational demand. That is, the players are engaged in a war of
attrition in which each player seeks to avoid being the one to concede. Note that
the war of attrition structure is derï ed in Section 4: as the time between offers
goes to zero, equilibrium strategies in effect entail either sticking with the initial
‘‘irrational’’ demand or conceding completely to the opponent’s demand.

In Section 4, we establish the ‘‘independence from procedures’’ result and the
explicit characterization of the limit alluded to above.3 The key element of the
convergence result is a Coasian property according to which the first player to
reveal rationality does so by either accepting his opponents’ irrational demand
or by conceding to it ‘‘immediately’’ after revealing rationality. Our analysis here
relies heavily upon a brief but incisive discussion of one-sided reputation

Ž .formation in bargaining, developed in Chapter 8 of Myerson’s 1991 game
theory text. Our notion of type corresponds exactly to his definition of an
r-insistent strategy.

Section 5 develops limit results when the ex ante probability of irrationality
goes to zero. We show that in the limit delay and inefficiency disappear and
provide explicit formulae for the players’ equilibrium payoffs.

Section 6 discusses related literature and Section 7 concludes.
Before proceeding further, we offer an overview of the varied influence on

this research and our sense of how it fits into earlier literatures. In terms of the

3The uniqueness result refers to behavior after the initial choice of types to mimic. The overall
outcome will depend in general on the non-trivial procedural description of the sequence in which
initial types are chosen.



D. ABREU AND F. GUL88

reputational prospective we develop, our work reflects the seminal influence of
Ž . Ž .Kreps and Wilson 1982 , Milgrom and Roberts 1982 , and most recently

Ž .Myerson 1991 . From the point of view of bargaining theory and its substantive
predictions, the natural counterpoint is the fundamental paper by Rubinstein
Ž .1982 on complete information bargaining, particularly when one adopts the
perspective of slight irrationality. On the analytical side the reduction to a war

Žof attrition is very closely related to the logic of the Coase conjecture see Gul,
Ž .. Ž .Sonnenschein, and Wilson 1986 , and, in particular, Myerson’s 1991 reputa-

tional perspective on this theme. After the war of attrition structure is in place,
much of the subsequent analysis is familiar, say, from the work of Hendricks,

Ž .Weiss, and Wilson 1988 , and in a bargaining context, Chatterjee and Samuel-
Ž . Žson 1988 . There are, however, key differences uniqueness of equilibrium,

.simultaneous termination of concessions in finite time upon which we elabo-
rated in Section 2. Indeed the latter features already appear in Kreps and

Ž .Wilson 1982 in their analysis of two-sided reputation formation with a single
Ž .irrational type on each side. As compared with Rubinstein 1982 we add

general bargaining protocols and incomplete information about types. As com-
Ž .pared to Myerson 1991 , we introduce general bargaining protocols, two-sided

reputation formation, and multiple types. To conclude, we have drawn upon a
variety of connected themes to develop a stylized but reasonably full-fledged
reputational theory of bargaining that, in particular, allows for two-sided reputa-
tion formation, and multiple reputational types.

2. CONTINUOUS-TIME BARGAINING

Here we define the bargaining problem in continuous-time. We then analyze
a special case in which each player has only one irrational type. This special case
both conveys the flavor of the analysis and is furthermore the basic building
block for the multiple type cases studied subsequently. An irrational type of

i Ž . i iplayer i is identified by a number a g 0, 1 ; a type a always demands a ,
accepts any offer greater or equal to a i, and rejects all smaller offers. We

i Ž . iŽ i.denote by C ; 0, 1 the finite set of irrational types for player i and by p a
the conditional probability that i is irrational of type a i given that he is
irrational. Hence, p i is a probability distribution on C i. The initial probability
that i is irrational is denoted by z i. Finally, player i’s rate of time preference is

i �Ž i i i i.2 4r . The continuous-time bargaining problem is denoted Bs C , z , p , r .is1
At time 0, player 1 chooses her demand a 1. If she is rational, this is a

strategic choice; if she is irrational, she merely makes the demand corresponding
to her type. After observing a 1 gC1, player 2 either immediately accepts,
strategically if he is rational or because he is irrational and of a type a 2 such
that a 1 qa 2 F1. Or player 2 makes a demand a 2 gC 2 such that a 1 qa 2 )1.
Again, this may be because 2 is rational and strategically demands a 2 or
because 2 is irrational of type a 2 gC 2. After player 2 demands a 2, player 1 can
concede or a war of attrition ensues. It is shown in Section 4 that this war of
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Ž .attrition structure is uniquely and robustly determined as the limit of equilibria
of discrete-time games in which both players make offers frequently. We assume
that max 1 a 1 qmin 2 a 2 )1. Hence all types of player 2 are incompati-a g C a g C1 2

ble with the greediest type of player 1. A strategy s 1 for player 1 is defined by a
probability distribution m1 on C1 and a collection of cumulative distributions

1 � 4 Ž 1 2 . 1 2 1 2 1 Ž .1 2 1 2F on R j ` , for all a , a gC =C such that a qa )1. F t isa , a q a , a

Ž .the probability of player 1 conceding to player 2 by time t inclusive . It follows
that

1 1 1Ž . Ž .1 2lim F t F1yp aa , a
tª`

where

1 1 Ž 1 .z p a
1 1Ž .p a s 1 1 1 1 1 1Ž . Ž . Ž .z p a q 1yz m a

is the posterior probability that 1 is irrational immediately after it is observed
1 1 Ž .1 2that 1 demands a at time zero. Note that F 0 may be strictly positive anda , a

represents the probability that 1 may concede immediately to 2’s counter-offer
a 2.

Let Q denote ‘‘immediate acceptance.’’ A strategy for player 2 is defined as a
2 Ž 2 2 . 1 1 2 1 2 2 2

1 1 2 1collection s s m , F for a gC and a )1ya , a gC . Here, ma a , a a
2 � 4 Žis a probability distribution over C j Q and describes player 2’s choice after

1. Ž . 2 1 2 2observing a between Q immediate acceptance and a )1ya , a gC .
For any a 2 )1ya 1, F 2

1 2 describes player 2’s choice of concession timea , a

conditional upon a 1 and his choice of a 2. Without loss of generality, we require
2 Ž . 2 1 Ž1 2that F 0 s0 for all a )1ya . Both conceding at ts0 and choosing Qa , a

.correspond to immediate concession.
Ž 1 2 .The conditional probability of 2’s irrationality given that a , a are de-

manded initially is

2 2 Ž 2 .z p a
2 2Ž .1p a s .a 2 2 2 2 2 2Ž . Ž . Ž .1z p a q 1yz m aa

Note two important differences between this bargaining game and the stan-
dard war of attrition. In the bargaining game, at time zero players choose a type
to mimic; furthermore the probability of eventual concession is less than one.

1 2 1 2Ž . Ž .For ss s , s , as a , a , and T-`, define

11 2 1 yr y 2Ž < . Ž .1 2U t , s a [a e dF yH a , a
y-t

11 1 2 2 2 y yr tŽ . Ž . Ž .1 2 1 2q a ya q1 F t yF t ?ea , a a , a2

12 2 yr tŽ . Ž .1 2q 1ya 1yF t ?ea , a
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2 Ž y. 2 Ž .1 2 1 2where F t s lim F y . This expression is the expected utility ofa , a y  t a , a
1 2Ž .player 1 who concedes at time t, given the strategy profile ss s , s and

1 2Ž .given that as a , a is observed at time zero. For a player who never
concedes, i.e., ts`, the corresponding payoff is

11 2 1 yr y 2Ž < . Ž .1 2U `, s a sa e dF y .H a , a
w .yg 0, `

The penultimate expression, and the ones below, assume an equal split of the
surplus in the event of simultaneous concession. This tie-breaking assumption

Ž .may be replaced by any possibly time-dependent rule without affecting the
results; in equilibrium simultaneous concessions arise with probability zero. The

1 1 1Ž Ž Ž ... 2 2concession behavior of a rational player 1 is described by 1r 1yp a F ;a , a
1 2Ž .consequently the latter’s overall expected utility conditional upon as a , a

being observed at time zero is

1
1 1 2 1Ž < . Ž < . Ž .1 2U s a s U y , s a dF y .H a , a1 1Ž Ž ..1yp a w xyg 0, `

Finally, a rational player 1’s expected utility from the strategy profile s is

1 1 1 1 2 2 2 2 2Ž . Ž . Ž . Ž . Ž .1U s s m a a 1yz m Q qz p aÝ Ýa½
1 2 1a a F1ya

1 1 2 2 2 2 2 2 2Ž < . Ž . Ž . Ž .1q U s a , a 1yz m a qz p a .Ž .Ý a 5
2 1a )1ya

2 1 2 1 2Ž < . Ž < . Ž < .The definitions of U t, s a and U s a are symmetric to U t, s a
1 2 1 2 2 2 1 2 1 1 1Ž < . 1 1 2 1 1 2and U s a with p , F , m , p , and r replacing p , F , m , p , and ra a , a a a , a

respectively. Finally, define

2 1 1 1 1 1 1Ž . ŽŽ . Ž . Ž ..U s s 1yz m a qz p aÝ
1a

1 2 2 1 2 2 2Ž . Ž . Ž < . Ž .1 1= 1ya m Q q U s a , a m a .Ýa a
2 1a )1ya

Note that both agents get zero utility if no one ever concedes.
We now turn to the analysis of equilibrium in the case in which each player

has only one irrational type a i. By our earlier assumption, a 1 qa 2 )1. With a
single irrational type we simplify our definition of a strategy; player i’s strategy
is just the cumulative F i.4 Consequently, the continuous-time bargaining game
is much like a war of attrition: if player i concedes at time t, then his utility is
Ž j. yr i t j yr j t1ya e while j’s utility is a e .

4 2 2Ž .In order to do away with the need for m , we will allow F 0 )0 in the remainder of this
section.
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Ž Ž ..It is well-known see, for instance, Hendricks, Weiss, and Wilson 1988 that
the set of equilibria of this war of attrition are characterized by the following

Ž .three properties: i at most one player concedes with positive probability at
Ž . i jŽtime 0, ii after time 0 player i concedes at constant hazard rate l s r 1y

i. Ž j Ž i..a r a y 1ya that makes the opponent indifferent between waiting and
Ž .conceding, and iii unless the game ends with probability 1 at time 0, concession

by both players continues forever.
Ž 1 2 .Hence F , F is an equilibrium of the war of attrition if and only if

iŽ . i yl i t i w x Ž 1.Ž 2 . i iŽ .F t s1yc e , c g 0, 1 , and 1yc 1yc s0. Observe that 1yc sF 0
Ž 1.Ž 2 .is the probability that i concedes at time 0, hence 1yc 1yc s0 corre-

Ž . Ž i . Ž i. isponds to i above. Also, dF rdt r 1yF sl is the constant hazard rate
Ž . i inoted in ii . Finally, note that F is strictly increasing whenever c )0 as
Ž .required by iii .

Our bargaining game differs from the war of attrition since there is a positive
prior probability of irrationality for each agent. Nevertheless, the familiar
arguments from the analysis of the war of attrition suffice to show that
equilibrium of the bargaining game shares the first two properties.

Ž . Ž X.However, in the bargaining game iii is replaced by: iii There exists a finite
time T 0 at which the posterior probability of irrationality for both agents
reaches 1 simultaneously and concessions stop. The last requirement pins down
the identity of the player who needs to make a concession at time 0 as well as
the probability of such a concession and hence establishes the uniqueness of
equilibrium. Thus, equilibrium of the bargaining game is characterized by the
following conditions:

iŽ . i yl i t 0F t s1yc e for all tFT ,
i w x Ž 1 .Ž 2 .c g 0, 1 , 1yc 1yc s0, and

i iŽ 0 .1yz sF T for is1, 2.

This is similar to the two-sided reputation formation analysis of Kreps and
Ž . Ž X .Wilson 1982 . As in their work property iii is critical in that it enables us to

identify a particular equilibrium of the war of attrition as the only equilibrium of
the bargaining game. The intuition for the necessity of having the posterior
probability of irrationality reach 1 for both agents at the same time is quite
clear. Since concession must be made at a constant rate and only rational
players concede, eventually the probability of irrationality for i must reach 1. If
player 1’s probability of irrationality reached 1 at t 1 before 2’s, then 2, if
rational, would surely concede at t 1. Hence, 1 would be conceded to with strictly
positive probability at t 1. But player 1 would stop conceding at t-t 1 suffi-
ciently close to t 1 in anticipation of this ‘‘bonus’’ at time t 1, contradicting the
constant hazard rate requirement. If player i does not concede with positive
probability at time 0, then the probability of his irrationality will reach 1 at time

i Ž i. iT [ ylog z rl . Since only one person can concede at time zero, concessions
1 � 1 24must continue until time t smin T , T . The ‘‘weaker’’ player, i.e. the player

with the larger T i must concede with sufficient probability at time zero, so that
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conditional on not conceding, his probability of irrationality reaches 1 at the
same time as his opponent’s. Notice that a player’s ‘‘strength’’ is increasing in his
own probability of irrationality and his opponent’s rate of impatience and
decreasing in the amount of his demand.

The argument establishing that players’ probabilities of irrationality reach 1 at
Ž . Žthe same time is essentially the same argument that is needed for i i.e., both

.players cannot concede with positive probability at time 0 . Our proof of
Proposition 1 entails combining this argument with the well-known war of

Ž .attrition arguments that establish ii .
1̂ ˆ2 XŽ . Ž . Ž . Ž .Let F , F be the unique strategy profile characterized by i , ii , and iii .

0 1 1 2 2 i i l iT 0 ˆi�Ž . Ž . 4 Ž .That is, T smin ylog z rl , ylog z rl , c sz e , and F t s1y
cieyl i t.

i � i4PROPOSITION 1: If C s a for is1, 2, then the unique sequential equilibrium
1̂ ˆ2Ž .of B is F , F .

1 2Ž .PROOF: Let ss F , F define a sequential equilibrium. We will argue that
Ž .s must have the form specified i.e., uniqueness and that these strategies do

Ž .indeed define an equilibrium existence .
Let ui denote the expected utility of a rational player i who concedes at times

i i i i� < 4s. Define A [ t u smax u . Since s is an equilibrium, A /B for is1, 2.t s s
i � < iŽ . iŽ X.4XAlso, let t s inf tG0 F t s lim F t , where inf B[`. Then:t ª`

Ž . 1 2a t st . A rational player will not delay conceding once she knows that
her opponent will never concede.
Ž . 1 2 1b If F jumps at tgR, then F does not jump at t. If F had a jump at t, then

player 2 receives a strictly higher utility by conceding an instant after t than by
conceding exactly at t.
Ž . i jc If F is continuous at t, then u is continuous at ss t for j/ i. This followss

i Ž Ž . .immediately from the definition of u see equation 1 below .s
Ž . Ž X Y . X Y 1 1 2d There is no inter̈ al t , t such that 0F t - t Ft where both F and F

Ž X Y .are constant on the inter̈ al t , t . Assume the contrary and without loss of
U 1 Y Ž X Y .generality, let t Ft be the supremum of t for which t , t satisfies the

Ž X U .above properties. Fix tg t , t and note that for « small there exists d)0 such
i i Ž U U . Ž . Ž .that u ydGu for all sg t y« , t for is1, 2. By b and c there exists it s

such that ui is continuous at ss tU. Hence, for some h)0, ui -ui for alls s t
Ž U U . i isg t , t qh for this player i. Since F is optimal, we conclude that F is

Ž X U . j jconstant on the interval t , t qh . The optimality of F then implies that F is
Ž X U .constant on t , t qh . Hence, both functions are constant on the latter

interval. This contradicts the definition of tU.
i Ž X Y .As we noted above if F is constant on some interval t , t , then the

j j Ž X Y . Ž .optimality of F implies that F is constant on t , t ; consequently, d implies
Ž .e :
Ž . X Y 1 iŽ Y . iŽ X.e If t - t -t , then F t )F t for is1, 2.
Ž . i if F is continuous at t)0. To see this recall that if F has a jump at t then

j Ž . Ž .F is constant on the interval ty« , t for j/ i. This contradicts e .



BARGAINING AND REPUTATION 93

Ž . i w 1 x Ž . Ž .From e it follows that A is dense in 0, t for is1, 2. From c and f it
i Ž 1 x i Ž 1 xfollows that u is continuous on 0, t and hence u sconstant for all sg 0, t .s s

i Ž 1 x iConsequently A s 0, t . Hence u is differentiable as a function of t andt
i Ž 1.du rdts0 ; tg 0, t . Nowt

t i ii i yr x j j yr t jŽ . Ž . Ž . Ž Ž ..1 u s a e dF x q 1ya e 1yF t .Ht
xs0

j i Ž 1.The differentiability of F follows from the differentiability of u on 0, t .t
Ž .Differentiating 1 and applying Leibnitz’s rule, we obtain

i yr i t jŽ . Ž j . i yr i t Ž jŽ .. Ž j . yr i t jŽ .0sa e f t y 1ya r e 1yF t y 1ya e f t
jŽ . jŽ . jŽ . j yl j t jwhere f t sdF t rdt. This in turn implies F t s1yc e where c is yet

1 2 iŽ i. ito be determined. At t st optimality for player i implies that F t s1yz .
jŽ . iŽ . Ž . i yl i t iAt ts0, if F 0 )0 then F 0 s0 by b . Let T solve 1ye s1yz . Then

1 2 0 � 1 24 i jt st sT [min T , T and c , c are determined by the requirement 1y
i yl iT 0 i i î ˆj ic e s1yz . So F sF for is1, 2. If j’s strategy is F , then u is constantt
Ž 1 x i i 1

0on 0, t and u -u ;s)t . Hence any mixed strategy on this support, and,s T
ˆi 1̂ ˆ2Ž .in particular, F is optimal for player i. Hence F , F is indeed an equilibrium.

Q.E.D.

In the unique equilibrium derived above, a rational player j’s utility is

ˆi i ˆi jŽ . Ž Ž ..Ž .F 0 a q 1yF 0 1ya

Žsince player j’s equilibrium strategy entails concession at any time «)0 and
0 ˆi i i yl iŽT iyT 0 . 0 1 2. Ž . � 4before T . Furthermore, F 0 s1yc where c se , T smin T , T .

Since a j )1ya i, player i prefers to be conceded to than to concede and it is
i Ž i. inatural to think of T s ylog z rl as a measure of player i’s ‘‘weakness’’:

T i )T j means that player i must concede to player j at time 0. The effect of
any change in parameters can be determined by calculating how the change
influences the T i’s. For example, as r i increases player j/ i must concede more
rapidly between t and tqe in order to keep a more impatient player i
indifferent between conceding at t and waiting to concede until tqe . Thus

Ž j .player j’s probability gets ‘‘used up’’ more quickly i.e. T decreases . Conse-
j j i i i Žquently if c -1, then dc rdr )0, dc rdr s0 player j concedes to i at ts0

. i i i j i Žwith smaller probability and if c -1, dc rdr -0 and dc rdr s0 player i
. iconcedes to j at ts0 with higher probability . A small increase in r makes

Ž . Žplayer i worse off without affecting player j or player j better off without
.affecting player i .

Ž .Finally, note that the equilibrium exhibits delay and hence inefficiency . To
see this simply and starkly, suppose the model is symmetric: r1 s r 2 s r, a 1 sa 2

1 2 1 Ž . 2 Ž .1 2 1 2sa , and z sz sz. Then, in equilibrium, F 0 sF 0 s0. The ex-a , a a , a

Ž .pected payoff of a rational player 1 is 1ya since conceding at zero is in the
support of player 1’s optimal concession times. The payoff of an irrational player

0 Ž 01 is the payoff of a rational player 1 who concedes at T since conceding at T
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Ž .. 0is also optimal, this payoff is 1ya less the payoff at T of conceding if player
2 has not conceded up to T 0. Thus, the expected payoff to player 1 is less than
Ž . Ž .1ya and the total utility loss is in excess of 1y2 1ya s2ay1, which is

1clearly substantial for a significantly greater than . Observe also that the2

inefficiency is a consequence of delay to reaching agreement rather than not
Ž .reaching agreement at all; the ex ante probability of disagreement is only

Ž .2z=zs z .

3. THE MULTIPLE TYPE CASE

The single type case is a basic building block for our analysis but in itself
yields a somewhat limited theory of bargaining. This section is concerned with
analyzing the general bargaining game of the previous section. The generaliza-
tion to multiple irrational types is important for a number of reasons: First, it
permits a theory with a richer set of possible equilibrium divisions of the
surplus. Second, the generalization enables us to identify some of the more
robust conclusions of the analysis of the one-type model. Finally, within the
multiple type bargaining model, we identify some implications of our theory that
are independent of the exogenously specified distributions over types, p i.

Proposition 2 establishes existence and uniqueness of equilibrium. In the
single type case of Section 2, a basic equilibrium requirement was that the
normal types of both players had to finish conceding at exactly the same instant.

Ž . Ž .Consequently it was sometimes necessary for one and only one player to
concede with positive probability at time zero. An additional requirement now is
that the multiple types need to be mimicked with appropriate weights: the
resulting posterior probabilities of rationality modulate the relative strengths of
the types such that all types mimicked with positive probability obtain the same
equilibrium payoff. The argument for uniqueness is somewhat involved. Never-
theless, we offer some intuition. The ‘‘strength’’ of a player depends upon the
posterior probability of the type she mimics, and the latter probability decreases
with the probability with which that type is mimicked. The payoffs to a type
being conceded to with positive probability at time zero are strictly increasing in
‘‘strength.’’ Multiple equilibrium distributions over types being conceded to are
in conflict with the requirement that types mimicked with positive probability
must have equal payoffs that are not smaller than the payoffs of types that are
not mimicked. This conflict is easiest to see when the opposing player has a
single type.

These points are elaborated upon below, and the formal proof may be found
in the Appendix. We focus first on player 2, and consider the intermediate case
with one irrational type for player 1 and multiple irrational types for player 2.

1Ž 1. � 14 1Since m a s1 for a sC , a strategy for player 1 must specify demanding
1 Ž .a at time 0. Player 2 will either concede immediately play Q or demand some

a 2 gC 2, a 2 )1ya 1. The analysis of the previous section implies that in
1 2Ž 1. Ž 1 2 .equilibrium, players 1 and 2 must concede at rates l s r 1ya r a qa y1

2 1Ž 2 . Ž 1 2 . Ž .and l s r 1ya r a qa y1 respectively. Let xg 0, 1 denote the proba-



BARGAINING AND REPUTATION 95

bility of irrationality for player 1. Absent concession with positive probability at
time zero, the probability of irrationality for player 1 will reach 1 at time

1 Ž . 1 2 1T s ylog x rl . If player 2 does not play Q but chooses some a )1ya ,
then his probability of irrationality will reach 1 at time

2 2 Ž 2 .1 z p a
2T sy log .2 2 2 2 2 2 2Ž . Ž . Ž .1l z p a q 1yz m aa

As argued in the previous section the probabilities of irrationality must reach 1
for both agents simultaneously. But if player 2 chooses a 2 at time 0, he has no
other opportunity to concede at time 0 and since he concedes at rate l2

thereafter, in equilibrium it must be that T 1 GT 2. If this inequality is strict,
then player 1 must concede with positive probability at time 0 so that condi-
tional on not conceding the probabilities of irrationality reach 1 for both agents
simultaneously. That is,

1 z1

log1 1 1 1Ž .Ž .l z q 1yz 1yq

2 2 Ž 2 .1 z p a
s log2 2 2 2 2 2 2Ž . Ž . Ž .1l z p a q 1yz m aa

where q1 is the probability of conceding at ts0.
Therefore the payoff to player 2 of mimicking a 2 is a 2 times the probability

that 1 concedes to player 2 immediately plus 1ya 1 times the probability that 1
does not concede immediately. Note that this payoff is strictly increasing in the
probability of immediate concession by player 1, q , and hence is strictly greater1
than 1ya 1 whenever the latter probability is positive. If m2 is to be a part of
an equilibrium, then all types mimicked with positive probability must yield the
same payoff for player 2, which furthermore must be not lower than the payoff
associated with mimicking types that are mimicked with zero probability. This
elementary property pins down the equilibrium m2 uniquely since the payoff
associated with mimicking any a 2 is increasing in the probability of immediate
concession by player 1 which in turn is decreasing in T 2. Finally, from the above

2 2 Ž 2 .1formula for T , the latter is increasing in m a .a

What of player 1 and the general case where cardinality of C1 is greater than
1? We already know that for any a 1 and posterior probability of irrationality x,
the equilibrium m2 is uniquely determined. In our proof, we establish that given
this unique equilibrium response to x, the payoff to player 1 is constant until x
reaches some x and is strictly increasing thereafter. Furthermore x itself is

1Ž 1.decreasing in m a . This observation enables us to construct an argument for
the ‘‘uniqueness’’ of m1 similar to the uniqueness for m2 outlined above. The
added complication is the region below x over which strict monotonicity fails;
for all x-x, a rational player 2 mimics max C 2 with probability 1. When a
rational player 1 knows that her rational opponent will choose max C 2 with
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probability 1, irrespective of her choice of a 1 the equilibrium m1 may be
indeterminate. This indeterminacy however, does not translate into a multiplic-

˜ity of equilibrium outcomes u , as we establish in the proof of Proposition 2
below.

�Ž i i i i.2 4PROPOSITION 2: For any bargaining game Bs C , z , p , r a sequentialis1
ŽŽ 1 1 . Ž 2 2 ..1 2 1 1 2equilibrium m , F , m , F exists. Furthermore, all equilibria yield thea , a a a , a

same distribution o¨er outcomes.

PROOF: See Appendix.

The proof of Proposition 2 contains the main elements of the argument for
the following comparative static results. Recall from the discussion preceding
Proposition 1 that a player becomes ‘‘stronger’’ as she becomes more patient or
when the probability that she is irrational increases. When player i becomes

Ž i j .infinitely more patient than player j r rr ª0 , player i extracts all bargaining
surplus from a rational player j. A similar conclusion follows if player i is

Ž j i .infinitely more likely to be irrational than player j z rz ª0 . These are stated
formally below.

PROPOSITION 3: Let B be a sequence of bargaining games and ¨ i the corre-n n
sponding sequence of sequential equilibrium payoffs for a rational player i.
Ž . 1 2a If all parameters other than r and r are constant along the sequence B ,n n n

Ž i j. i Ž j. i Ž i j.then, for i/ j, lim r rr s0 implies lim inf ¨ G 1yz max C , lim r rr s`n n n n n
i Ž j. jimplies lim sup ¨ F1y 1yz max C .n

Ž . ib If all parameters other than z for some is1, 2 are constant along then
i i Ž j. i isequence B , then for i/ j, lim z s1 implies lim inf ¨ G 1yz max C ; lim zn n n n

s0 implies lim ¨ j smax C j.n

PROOF: See Appendix.

It is interesting to compare our model and the proposition above to recent
work on reputation in repeated games. See Section 6 for a discussion of
differences and similarities.

4. THE DISCRETE MODEL AND CONVERGENCE

This section considers discrete bargaining games. We analyze the limit of
equilibria as both players are able to make offers increasingly frequently. Apart
from the preceding requirement, there are essentially no restrictions on the
bargaining structure. In contrast to Rubinstein’s complete information theory,
our model satisfies a strong form of independence from the details of the
bargaining protocol. When the time between offers is sufficiently small the
equilibrium distribution of outcomes must be close to the unique equilibrium of
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the continuous-time game analyzed in Section 2. Somewhat more precisely,
consider any sequence of discrete time games indexed by n where in the game
n, in any e -time interval both players have at least one opportunity to make ann
offer. For simplicity, assume that each player has only one irrational type. An

˜equilibrium outcome in game n is a random object u any realization of which isn
an agreed to division and a time at which agreement is reached. For any such

˜ ˜ ˜sequence if e ª0 as nª`, u ªu in distribution, where u is the uniquen n
equilibrium distribution of the continuous-time game. This convergence result
motivates the convenient continuous-time framework of Sections 2 and 3. An
important ingredient of this result is that in the discrete-time game revelation of
rationality amounts in the limit to conceding to one’s opponent’s irrational
demand. This property is, of course, the defining feature of the continuous time

Žgame and is closely related to the Coase conjecture see, for instance, Gul,
Ž ..Sonnenschein, and Wilson 1986 .

Recall that the Coase conjecture asserts that when the time between offers is
sufficiently small, bargaining between a seller with known valuation s and a

Ž .buyer who may have one of many reservation values each higher than s results
in almost immediate agreement at the lowest buyer valuation. In his discussion

Ž .of bargaining, Myerson 1991, pp. 399]404 offers an important new perspective
on this result by recasting it in a reputational setting. The low valuation buyer is
replaced by an irrational type who demands some constant amount and accepts
no less than this amount. In an alternating offer bargaining game, he shows that
as the time between offers goes to zero, agreement is reached without delay at
the constant share demanded by the irrational type, just as in the Coase
conjecture there is immediate agreement at the lowest buyer valuation. Both
results are independent of the ex ante probability of the low type and the

Žplayers’ relative discount factors so long as they are both close to 1, as implied
.by the assumption that offers are frequent . Thus, Myerson observes that the

influence of asymmetric information overwhelms the effect of impatience in
determining the division of surplus. We extend Myerson’s analysis to the case of
two-sided asymmetric information where the Coasian effect noted by Myerson
transforms the bargaining game into the game studied in Section 2. In the
two-sided case, asymmetric information again overwhelms the effect of timing of
offers; howe¨er, as the preceding section indicates, the relatï e impatience of the
agents does play a role.

A key element of Myerson’s argument and a central ingredient in the proof of
Proposition 4 is the following: When one agent is known to be rational and
there is a positive probability that her opponent is irrational, delay is not
possible. This means that either the agent known to be rational i, gives in to the
irrational demand of the other agent j, or agent j also reveals himself to be
rational. The latter outcome occurs only when revealing himself to be rational
yields a payoff no less than a j to agent j. Otherwise, j prefers to pretend to be
irrational and be conceded to by i without delay. Thus, in either case j obtains a
payoff no less than a j. With this conclusion in place it is easy to see how a war
of attrition emerges: at any time t, by pretending to be irrational, agent i can



D. ABREU AND F. GUL98

allow j to make the offer 1ya j or reveal herself to be rational. In both cases i
could obtain a payoff no less than 1ya j, since a i )1ya j by assumption and i
gets a payoff no less than a i once j reveals himself to be rational. Thus, agent i
has a way to end the game that will yield her 1ya j, for is1, 2 and j/ i. On
the other hand, if j chooses to end the game i gets a payoff of at least a i, which
means that in equilibrium i will get exactly a i. But this is precisely the set-up of
a war of attrition where i’s high payoff is a i and her low payoff is 1ya j. Thus,
the analysis of Section 2 applies.

Formally, our model of discrete-time bargaining is the following: If no
agreement is reached, players receive zero utility. If an agreement is reached at

w xtime t and if player 1 receives a share xg 0, 1 of the pie, players 1 and 2 enjoy
yr 1 t Ž . yr 2 t 1 2utilities xe and 1yx e where r and r are their respective rates of

time preference. The probability of an irrational type is z i and a i is the share
demanded by the single irrational type. An extensive form bargaining game is

� 4specified in this environment by a function g : R ª 0, 1, 2, 3 where for is1, 2,q
Ž . Žg t s i denotes that player i can make an offer in period t to which player j/ i

. Ž .may immediately agree or disagree , g t s3 denotes simultaneous offers at t
Ž . i � < Ž .and g t s0 means that no one makes an offer in period t. Let I s t g t s i

4or 3 , denote the set of times at which player is1, 2 makes an offer. We assume
i w xthat g is a discrete bargaining game with an infinite horizon: for all t, I : 0, t

is finite, and I i is an infinite set. The game is played as follows: At tgI i player
i makes an offer x. If player j agrees, then the game ends with the agreement. If
player j rejects, then the game continues and the next offer is made at time
X � < 1 24 X jˆ ˆt [min t) t tgI jI by j such that t gI . For simultaneous offers the

game ends if the offers are compatible; in the event of strict compatibility the
surplus is split equally. An irrational player i always demands a share a i for
himself and accepts an offer if and only if the offer yields him a share at least
a i. We require a 1 qa 2 )1. Notice that this definition of a bargaining game is
very general and in particular accommodates nonalternating, nonstationary,
bargaining procedures.

Ž .`A sequence of discrete bargaining games g is said to converge ton ns1
continuous-time if for all e)0, 'n such that for all nGn, tG0, and is1, 2,

Žw x.igg t, tqe .n
iLet s denote a behavior strategy for player i in the game g , and s an n n

˜ Ž .̃behavior strategy profile. Let u s x, t denote a random outcome of g , where˜n n
˜a realization of u is the share x received by player 1 and the time t at whichn

agreement is reached. We identify the outcome in which no agreement is
Ž .reached with 1r2, ` .

Recall from Section 2 and the discussion immediately preceding Proposition
1, the unique equilibrium of the continuous-time game when each player has a

˜single irrational type. Let u denote the associated random outcome.

Ž .`PROPOSITION 4: Let g be a sequence of discrete bargaining games con¨erg-n ns1
˜ing to continuous-time. Let s denote a sequential equilibrium of g and u then n n

˜ ˜random outcome corresponding to s . Then u con¨erges in distribution to u .n n
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PROOF: See Appendix.

Ž .REMARKS: i Observe that by establishing the convergence of the equilibria
of the discrete-time game to the unique equilibrium of the continuous-time
game, Proposition 4 establishes the independence of the bargaining outcome
from the bargaining procedure. It does not establish the irrelevance of the
relative impatience of the two players, since the outcome of the continuous-time
bargaining game itself depends on r1 and r 2 as can be seen from the equation
defining T i in Sections 2 and 3. To understand the dependence on procedure of
the complete information theory consider a discrete-time bargaining game in
which players alternate making offers. Let D i be the time interval between any
rejection by player i and the next possible acceptance or rejection by player j. In
the complete information theory, player i’s equilibrium utility is approximately

j j Ž j j i i. 1 2r D r r D q rD when D , D are small. Thus, even when agents can make
offers very frequently equilibrium shares vary substantially with the ratio D1rD2.
Ž . Ž .ii Perry and Reny 1993 is motivated by concerns about the robustness of

complete information bargaining to the bargaining procedures employed. Their
work does much to clarify the essential logic of bargaining models in the style of

Ž .Rubinstein 1982 . They study an extensive form structure which is ‘‘procedure-
less’’ in the sense that players can make offers at any time subject to the proviso
that a minimal time interval D must elapse between consecutive offers of thei
same player. Since they place no constraints on the negotiation structure other
than those imposed by the D -minimal delay requirement they view their resultsi
as being ‘‘independent of procedures.’’ Nevertheless, their model is closer in
spirit to Rubinstein’s than ours since, even when both D ’s are arbitrarily small,i
the equilibrium distribution of the gains from trade depends on the ratio D rD .1 2
Ž .iii Proposition 4 considers only the case of a single irrational type for each

player. A similar convergence result can be established for the multiple type
bargaining model provided that the same player moves first in each of the
discrete games in the sequence. With multiple types, the equilibrium outcome of
the continuous-time game and hence the limiting equilibrium outcome of the
discrete-time game does depend on which player moves first. We do not view the
ordering of initial moves as representing an innocuous change in bargaining
protocol akin to whether a player needs to pause for breath for 10 seconds as
opposed to 5 seconds before making a counter-offer. There ought to be no
presumption that being ‘‘saddled with’’ or ‘‘having the privilege of’’ first staking-
out a bargaining position should have no impact on the final outcome.
Ž . 5iv With different irrational types our result may not hold. Suppose we

replaced an a 1-type for player 1 by a type that demanded a 1 but was in fact
willing to accept anything above .8a 1. Now suppose in the corresponding

1 Ž .Rubinstein complete information game player 1’s payoff was ka , for kg .8, 1 .
Then player 2 would concederreveal rationality by offering .8a 1. An irrational
player 1 would accept this offer, while a rational player 1 would instead reject it,
reveal his rationality, and obtain ka 1 ) .8a 1 instead. Details of bargaining

5We are grateful to a referee for this example.
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Ž .protocol could indeed within some range matter. Nevertheless, it is possible
that the independence of protocol result would re-emerge with a ‘‘rich’’ set of
types. Such a result would seek to identify a basic subclass of types whose
presence yielded the result independently of which other types were present.

5. THE LIMITING CASE OF COMPLETE RATIONALITY

Ž .We turn now to limit results as the ex ante probability of irrationality of
6 Ž .both players goes to zero. This is a theme first explored by Kambe 1994 and

Ž .Compte and Jehiel 1995 in recent papers that build upon the preceding
Ž . Ž .analysis, presented initially in Abreu and Gul 1992 . Kambe 1994 proves that

Ž .in his model see the discussion following the corollary below inefficiency
disappears as the probability of irrationality goes to zero. In Compte and Jehiel
Ž .1995 , on the other hand, delay and hence inefficiency persist in the limit.

The purpose of this section is to conduct a Kambe-type analysis of our model,
Ž .and furthermore to reconcile the contrasting conclusions of Kambe 1994 and

Ž .Compte and Jehiel 1995 within our framework.
i i Ž i j. i � iLet ¨ s r r r q r . The proposition below establishes that ¨ [max agC

� 4 < i4j 0 a-¨ is a lower bound on player i’s limit payoff. Suppose that for some
small «)0, there exists a i such that ¨ i y«Fa i -¨ i, is1, 2. Then, it follows
simply from feasibility that these bounds are quite tight, that the efficiency loss
from bargaining is small, and that agreement is reached quickly with high
probability. This is stated in the corollary below.

Ž .Kambe 1994 discovered the key fact that drives this result: Consider a
sequence of bargaining games B such that z i ª0, is1, 2, and suppose thatn n

i Ž i Ž . . 1 2
1the z ’s go to zero at the same rate say, z s 1rn z . Let m and m be then n n a , n

corresponding equilibrium distributions and suppose that m1 ªm and m2
1 ªn a , n

2 Ž 1 2 . 1 2 2 Ž 2 . 1 2
1 1m . Consider any a , a gC =C such that m a )0, a qa )1, anda a

1Ž 2 . 2Ž 1. Ž 1 2 .r 1ya - r 1ya . Then, in the limit, conditional on a , a being chosen
at the beginning of the game, the rational type of player 2 will concede

1 1 1Ž 2 .immediately with probability approaching 1. But if a s¨ , then r 1ya G
2Ž 1. 2 1 1r 1ya implies a -1y¨ . Hence player 1 can guarantee ¨ in the limit.

Similarly player 2 can guarantee ¨ 2 in the limit.

�Ž i i i i.2 4PROPOSITION 5: Let B s C , z , p , r be a sequence of continuous-timen n is1
bargaining games.

Ž . 1 2 1 Ž 1 2 . Ž . Ž . iIf a lim z s lim z s0, lim z r z qz g 0, 1 and b ¨ is the sequentialn n n n n n
equilibrium payoff for player i in the game B , then lim inf ¨ i G¨ i for is1, 2.n n

PROOF: See Appendix.

6 These results are derived in the context of the continuous time game. They also apply to the
limit of discrete time games, when the time between offers goes to zero, before the probabilities of
irrationality go to zero.
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�Ž i i i i.2 4 �Ž i i i.2 4We will say that B s C , z , p , r converges to C , p , r ifn n is1 is1
Ž 1 2 .` Ž .z , z satisfies condition a of Proposition 5.n n ns0

�Ž i i i i.2 4 �Ž i i i.2 4COROLLARY: If B s C , z , p , r converges to C , p , r and forn n is1 is1
w x i i < i <some «)0 and all xg 0, 1 there exists a gC for is1, 2 such that a yx -

« , then for n sufficiently large, the equilibrium payoff of agent i is at least
Ž i Ž 1 2 ..r r r q r y2« and hence the inefficiency due to delay is at most 4« .

ŽIn Kambe’s model in fact he considers four variants, all of which yield rather
.similar results the two bargainers are initially free to make any offers. Immedi-

ately thereafter, they may, with some known exogenous probability z i, get
‘‘irrationally’’ attached to these offers and are in effect unable to accept or make
lower offers. In his model, when z1 and z 2 go to zero at the same rate, limitn n

Ž 1 2 . Žpayoffs are ¨ , ¨ as defined above. In fact, he also analyzes the case where
i Ž .n 2 Ž .n Ž . .z s b and z s b for arbitrary b , b g 0, 1 .n 1 n 2 1 2
The corollary above establishes that when the probability of irrationality

approaches zero, equilibrium behavior in Kambe’s model is similar to equilib-
rium behavior in our model provided that the set of irrational types is suffi-
ciently rich. In the limit, in both models, rational players choose to be virtually
compatible and share surplus in proportion to impatience. Hence, inefficiency
disappears.

Ž .Compte and Jehiel 1995 analyze a number of alternating offer bargaining
games to study the interaction of reputation and outside options. In their model
with multiple irrational types, they assume symmetry and show that as the time
between offers goes to zero, rational types of both players choose to be as close
to compatible as possible. In the limit only the lowest types a)1r2 are
mimicked with positive probability. While inefficiency is minimized there is
nevertheless an efficiency loss: 2ay1 amount of surplus is dissipated through
delay. Hence, unlike Kambe’s model and the case with a rich set of types,
inefficiency persists in their symmetric model when the probability of rationality
goes to one.

Proposition 6 below establishes that even when the set of irrational types is
not rich, generically inefficiency disappears. Thus, the symmetric case consid-

Ž .ered in Compte and Jehiel 1995 and hence their inefficiency result is non-
Ž 1 2 .generic in the sense of Proposition 6. Call C , C generic if

r1 r 2

/1 21ya 1ya

Ž 1 2 . 1 2 Ž 1 2 .for all a , a gC =C . Then, for generic C , C delay disappears and
Ž 1 2 .equilibrium payoffs converge to the ‘‘compromise outcome’’ a , a defined inc c

Ž 1 1. 1 2 1 2the Appendix. Note that a , a depends only on C , C , r , and r .c c

�Ž i i i i.2 4 �Ž i i i.2 4PROPOSITION 6: Let B s C , z , p , r con¨erge to C , p , r . Forn n is1 is1
Ž 1 2 . Ž 1 2 . 1 2generic C , C there exists a compromise outcome a , a , where a qa s1,c c c c

such that the equilibrium payoff of player i con¨erges to a i , is1, 2.c
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PROOF: See Appendix.

As in the case of Proposition 5, Proposition 6 shows that the equilibrium
payoffs do not depend on which player moves first at the beginning of the game.

6. RELATED LITERATURE

Our work abuts upon numerous literatures including complete and incom-
plete information bargaining, models involving ‘‘wars of attrition,’’ and the
literature on reputation formation.

The central component of our model is the notion of an ‘‘irrational’’ type as in
Ž . Ž .Kreps and Wilson 1982 and Milgrom and Roberts 1982 and in a bargaining
Ž .context, Myerson 1991 . These papers focus on one-sided reputation formation

with one irrational type. Our model features two-sided reputation formation
Ž .with multiple types on each side. As noted earlier Kreps and Wilson 1982 do

consider two-sided reputation formation with one irrational type on each side.
There are some other recent papers that consider two-sided reputation

Ž .formation. Schmidt 1993 studies repeated games. He identifies conditions that
guarantee one of the two players his ‘‘commitment’’ payoff even under two-sided
reputation formation. He considers a class of games called games of ‘‘conflicting
interests’’ and shows that for a fixed probability distribution over irrational types
for the two players, if there is a sufficiently high probability that player 2 is
rational and if the discount factor of player 1 is sufficiently close to 1, then in
any Nash equilibrium the payoff to player 1 approaches his commitment payoff.
This result parallels our analysis from Section 3. Proposition 3 establishes that
for a fixed and small probability of irrationality z 2 and any probability distribu-
tion p 2, the equilibrium probability that a rational player mimics his greediest
type approaches 1 and the probability that a rational player 2 concedes at time 0
approaches 1 as r1 approaches 0. When attention is not restricted to games of
conflicting interest, equilibrium outcomes are not unique in repeated game

Ž Ž ..models of reputation even with one-sided reputation see Schmidt 1993 . An
important distinction between bargaining and general repeated games is that in
a bargaining game, once both agents are revealed to be rational, the equilibrium
continuation is unique. Moreover the first player to reveal rationality may
choose to do so by accepting her opponent’s offer and terminating the game. In
particular, there is no opportunity for ‘‘punishing’’ either player after the
rationality of both players is revealed. This feature of bargaining plays a key role

Ž .in both Myerson’s 1991 result on one-sided bargaining and our Proposition 4.
The literature on one and two-sided reputation formation includes Aoyagi
Ž . Ž .1996 , Celentani, Fudenberg, Levine, and Pesendorfer 1996 , Celentani and

Ž . Ž .Pesendorfer 1996 , Cripps, Schmidt, and Thomas forthcoming .
Ž .Two other papers that are very closely related are Kambe 1994 and Compte

Ž .and Jehiel 1995 . These were discussed extensively in the preceding section.
After each player has chosen a type to mimic, maintaining reputations in the

continuous-time game is akin to not conceding in a war of attrition. Unlike
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classical wars of attrition models, ours has a unique equilibrium due to the fact
that an irrational type never concedes. The most pertinent prior uniqueness

Ž .result for wars of attrition is Kreps and Wilson 1982 .
A few earlier papers on bargaining echo the war of attrition aspects of our

Ž . Ž .work. These include Osborne 1985 , Ordover and Rubinstein 1986 , Chatterjee
Ž . Ž .and Samuelson 1987 , and Ponsati and Sakovics 1995 . These papers appear to

us to be more in the nature of pure concession games as opposed to full-fledged
bargaining models in the following respects:

1. The concession game structure is assumed rather than derived. In our work
the revelation of rationality amounts to conceding because of the logic of the
Coase conjecture and reputational expressions of the same theme. The conver-
gence result of Section 4 is essential in drawing a connection between bargain-
ing and the concession structure.

2. They confine attention to what in our framework would be a single
irrational demand.7 In our view it is essential that a theory of bargaining allow
for a wide array of possible agreements.

Ž .In Chatterjee and Samuelson 1988 , the pure concession game structure of
Ž .Chatterjee and Samuelson 1987 is replaced by a true discrete-time bargaining

game and the authors show the existence of an equilibrium that replicates the
key properties of the unique equilibrium of their earlier paper. The latter,
discrete-time paper, however, does not contain any uniqueness results.

We have presented our work as a counterpoint to the complete information
Ž . Žpaper by Rubinstein 1982 . As in the analysis of the chain-store paradox Selten

Ž . Ž . Ž .1977 , Rosenthal 1981 , Kreps and Wilson 1982 , and Milgrom and Roberts
Ž ..1982 , we feel that the limit case of complete information yields unintuitive
results. While from a substantive point of view the complete information case is
a key benchmark, in terms of the analytics, models of bargaining with incom-
plete information about valuations or discount factors are potentially more
closely related to our work. There are a great variety of such models entailing,
among other variations, one and two-sided uncertainty, and one and two-sided
offers. With one-sided uncertainty, one set of results is concerned with establish-

Žing the Coase conjecture see, for example, Gul, Sonnenschein, and Wilson
Ž . Ž ..1986 and the treatment in Myerson 1991 . These results are important
building blocks for the convergence result of Section 4 and our derivation of the

Žconcession game structure as noted earlier, the proof of Lemma 1 is adapted
Ž . .from Theorem 8.4 in Myerson’s 1991 text . Another strand of the literature

emphasizes the multiplicity of possible equilibria in the no-gap case. These
Žinvolve the consideration of nonstationary strategies Ausubel and Deneckere

Ž ..1989 . In the latter papers only the uninformed player can make offers. Once
an informed player can make offers, serious multiple equilibrium problems arise

7 Ž .While Osborne 1985 mentions the desirability of allowing multiple demands, his explicit
analysis of this case is limited. We also remark that the focus of his paper is quite different from
ours: his primary concern is to show that with risk averse agents the prediction of axiomatic and
noncooperative bargaining models differ.
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Ž .and subtle refinement arguments are needed to more or less successfully
Ž Ž . Ž .narrow down the set of equilibria see Cramton 1984 , Rubinstein 1985 ,

Ž . Ž .Grossman and Perry 1986 , Admati and Perry 1987 , Gul and Sonnenschein
Ž . Ž . Ž ..1988 , Cho 1990 , Ausubel and Deneckere 1992 .

In terms of assumptions, our work ought to be closest to models with
two-sided incomplete information and two-sided offers. The literature on this
case appears to be limited. We have already mentioned Chatterjee and Samuel-

Ž . Ž .son 1987 . Another contribution is due to Cramton 1987 ; he constructs a
particular equilibrium that has quite a different flavor from the equilibrium we
derive. In Cramton’s equilibrium, the player with the most extreme valuation

Ž .reveals i.e., concedes first, but the initial concession does not end the game.
Moreover, the two players always divide the ex post surplus equally. His model

Ž .does not generate a unique equilibrium. A recent paper by Watson 1998
analyzes an alternating offer bargaining model with two-sided incomplete infor-
mation about discount factors. He characterizes the set of possible payoffs
under a rationalizability type solution concept and compares this set with the set
of perfect Bayesian equilibrium payoffs. Finally, we note an intriguing early

Ž .paper by Crawford 1982 , which explores issues of inefficiency and commitment
in a two-period bargaining model.

7. CONCLUSION

This paper proposes a reputation-based theory of bargaining. It suggests to us
that a reputational perspective provides both a natural and quite powerful
framework within which to analyze problems of bargaining. We have worked
here with a very minimalist model, and in particular a very simple notion of
‘‘irrational types.’’ It would be very interesting to extend this kind of analysis to

Ž .more specified institutional settings for example, firmrunion bargaining , and
to accommodate a somewhat richer set of ‘‘irrational’’ strategies. We remark
that models with uncertainty about strategic posture as opposed to uncertainty
about valuations are of interest in themselves and as a pragmatic response to
the great difficulty of obtaining clear-cut results with two-sided uncertainty
about valuations.

Dept. of Economics, Fisher Hall, Princeton Unï ersity, Princeton, NJ 08544-1021,
U.S.A.

Manuscript receï ed July, 1996; final re¨ision receï ed December, 1998.

APPENDIX

1 1 Ž x Ž 1 .PROOF OF PROPOSITION 2: For all a gC and xg 0, 1 , let B a , x be the bargaining game
1 � 14 1obtained from the original game by replacing C with a and z with x; that is, in the bargaining

Ž 1 .game B a , x player 1 has a single irrational type and her probability of irrationality is x. All other
Ž 1 .parameters of B a , x are the same as in the original game B.
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Ž 1 .If the game B a , x does not end at time 0, then it must be that player 2 has chosen some
a 2 )1ya 1. We know from the analysis of Section 2, that after time 0 each player i must concede

i jŽ i. Ž 1 2 .at rate l s r 1ya r a qa y1 for j/ i. Therefore, determining the equilibrium mimicking
behavior for player 2 suffices to determine his full equilibrium strategy. Hence we will refer to m2, a

2 � 4probability distribution over C j Q , as a strategy for player 2.
Since mimicking a 2 -1ya 1 is never optimal and mimicking a 2 s1ya 1 is equivalent to

2Ž 2 . 2 1quitting, we will assume that m a s0 for all a F1ya .
Ž 1 .First, we will show that there is a unique equilibrium of the game B a , x . If xs1, then in

2Ž .equilibrium m Q s1; a rational player will never delay conceding if he knows that his opponent is
irrational. For the remainder of the proof we assume x-1.

Define

a 1 qa 2 y1 a 1 qa 2 y1
1 1 2 2 1 2Ž . Ž .T a , a , x sy log x and T a , a , y sy log y.2 1 1 2Ž . Ž .r 1ya r 1ya

2Ž 1 2 . 2 1Ž 1 2 . 2Ž 1 2 Ž 2 ..Let a a , a , x be the unique value of a such that T a , a , x sT a , a , y a where

2 2 Ž 2 .z p a
2Ž .y a s 2 2 2 2 2Ž . Ž .z p a q 1yz a

U Ž 2 . U 1Ž 1 2 U . 2Ž 1 2 Ž 2 ..and let x a be the value of x that solves T a , a , x s T a , a , y a . Let
1Ž 1 2 2 . 1q a , a , x, a be the value of q that solves

x
U 2Ž .x a s .1Ž .Ž .xq 1yx 1yq

Note that we have suppressed the dependence of xU on a 1 and a 2 and the dependence of y on
2 iŽ 1 2 .a . It is straightforward to verify that each T a , a , ? is a continuous, strictly decreasing function
Ž x iŽ 1 2 . 2Ž 1 2 .on 0, 1 with T a , a , 1 s0 for is1, 2. Similarly, a a , a , ? is a continuous, strictly decreasing

Ž x 1Ž 1 2 .function on 0, 1 . Also, the function q a , a , ? , ? is strictly decreasing and continuous in each of
2 w x Ž U Ž 2 .xits arguments, for all a g 0, 1 and xg 0, x a .

iŽ 1 2 .The interpretation of these functions is clear; T a , a , ? is the time at which player i’s
probability of irrationality reaches 1, as a function of his probability of irrationality at time 0, given
that a 2 is mimicked and player 1 does not concede with positive probability at time 0. The number

2Ž 1 2 . 2a a , a , x is the probability with which player 2 must mimic a so that both players’ probability
of irrationality reaches 1 at the same time, given that player 1 does not concede with positive

2 U Ž 2 .probability at time 0 after a is mimicked. Also, x a determines the initial probability of
irrationality for player 1 that leads to both players’ probability of irrationality reaching 1 at the same
time, given that a 2 is chosen with probability a2 and player 1 does not concede with positive

1Ž 1 2 2 .probability at time 0. Finally, q a , a , x, a is the probability with which a rational player 1 must
concede at time 0, so that both players’ probability of irrationality reaches 1 at the same time, given

U Ž 2 .the initial probability of irrationality xFx a for player 1.
By the arguments of Section 2, in equilibrium both players’ irrationality must reach 1 at the same

time, so the following hold:
Ž . 2Ž 2 . 2Ž 1 2 . 2 1i m a Fa a , a , x for all a )1ya . Therefore, the equilibrium probability that a

1Ž 1 2 2Ž 2 ..rational player 1 concedes at time 0 is q a , a , x, m a .
2Ž 1 2 2Ž 2 .. 2 Ž 1 .Let u a , a , x, m a denote the utility of player 2 if he mimics a in the game B a , x

2 2Ž 2 .given that equilibrium specifies that he mimic a with probability m a . That is,

Ž . 2 Ž 1 2 2 Ž 2 .. w Ž .Ž 1 Ž 1 2 2 Ž 2 ...xŽ 1 .ii u a , a , x , m a s xq 1yx 1yq a , a , x , m a 1ya

Ž . 1 Ž 1 2 2 Ž 2 .. 2q 1yx q a , a , x , m a ?a .

Ž . 2To see why ii holds, note that if player 1 concedes at time 0, then player 2’s payoff is a ; if not,
then player 2’s payoff is 1ya 1 since in equilibrium he is indifferent between conceding and not at
every t)0.
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Observe that the continuity and strict monotonicity of q1 implies the same properties for
2Ž 1 2 . w 2Ž 1 2 .x 2 2Ž 2 .u a , a , x, ? on 0, a a , a , x . If m is an equilibrium strategy, then m a )0 implies
2Ž 1 2 2Ž 2 .. 2Ž 1 2 2Ž 2 .. 2 1u a , a , x, m a Gu a , a , x, m a for all a )1ya . Let D denote the set of allˆ ˆ ˆ

2 � 4 Ž 1 . � 2 < 2Ž 2 . 2Ž 1 2 . 2probability distributions on C j Q , and D a , x s m gD m a Fa a , a , x for all a )1
1 2Ž 2 . 2 14 2 2Ž .ya and m a s0 if a F1ya . For m such that m Q -1,

Ž 2 . 2 Ž 1 2 2 Ž 2 ..F x , m s min u a , a , x , m a , and
2 2 2Ž .a s .t .m a )0

Ž 2 . 1F x , m s1ya , otherwise.

Ž 1 . Ž 1 .Define G, a correspondence from D a , x to D a , x as follows:

Ž 2 . � 2 Ž 1 . < 2 Ž 2 . 2 Ž 1 2 2 Ž 2 ..G m s m gD a , x m a )0 implies u a , a , x , m aˆ ˆ
2 Ž 1 2 2 Ž 2 .. 2 2 4Gu a , a , x , m a for all a gC .ˆ ˆ ˆ

It may be verified that the monotonicity of u2 in its last argument implies that m2 is an
Ž 1 . 2 Ž 2 .2 1equilibrium strategy for player 2 in the game B a , x if and only if m solves max F x, m .m g DŽa , x .

Moreover, m2 solves this maximization problem if and only if m2 is a fixed-point of G. It follows
2Ž 1 2 .from the continuity of u a , a , x, ? that G is upper hemi-continuous. Obviously, G is convex

Ž 1 . 2valued and D a , x is compact. Therefore, by Kakutani’s Fixed Point Theorem an equilibrium m
2Ž 1 2 . w 2Ž 1 2 .x 2exists. Since each u a , a , x, ? is strictly decreasing on 0, a a , a , x the equilibrium m is

unique. But if the equilibrium strategy for player 2 is determined uniquely, then q1, the probability
that 1 concedes to a 2 at time zero, is determined uniquely. After time zero, 1 must concede at rate

1 Ž 1 .l . Thus, the equilibrium strategy of player 1 in the game B a , x is unique.
1Ž 1 . Ž 1 .Let u a , x be the payoff of player 1 in the unique equilibrium of B a , x . We will show that

1Ž 1 . 1Ž 1 . 1Ž 1 .u a , ? is continuous and that there exists x such that for xFx, u a , x su a , x and
2Ž 2 . 2 Ž 1 .m max C s1 where m is the equilibrium strategy of player 2 in the game B a , x . We will also

1Ž 1 . w xshow that u a , ? is continuous and strictly increasing in x on x, 1 .
Ž 2 . Ž .Note that F ?, m is continuous and F ?, ? is upper semi-continuous. Hence a straight-forward

Ž 2 .2extension of the Theorem of the Maximum yields that arg max F x, m is a continuous function ofm
1Ž 1 .x. This implies u a , ? is a continuous function of x.

2Ž 1 2 . 2Ž 2 . 2Ž 1 2 . 2 2Ž .2 1Suppose Ý a a , a , x F1; then m a -a a , a , x for some a implies m Q )a ) 1ya

Ž 1 . 1 2Ž 2 . 2Ž 1 2 .0, so the equilibrium payoff of player 2 in B a , x must be 1ya . But m a -a a , a , x
1Ž 1 2 2Ž 2 .. Ž . 2Ž 1 2 2Ž 2 .. 1implies q a , a , x, m a )0; hence, by 2 , u a , a , x, m a )1ya . Therefore player 2

can get a higher payoff than his equilibrium payoff by mimicking a 2, a contradiction. Hence, we
have the following:

Ž . 2Ž 2 . 2Ž 1 2 . 2 1 2Ž . 2Ž 1 2 .2 1iii m a sa a , a , x for all a )1ya and m Q s1yÝ a a , a , x when-a ) 1ya
2Ž 1 2 .2 1ever Ý a a , a , x F1.a ) 1ya

Ž . 1 Ž 1 . 2 2 Ž 2 . Ž 2 . 2 Ž . 1iv u a , x s z p a q 1yz m Q aÝž /
2 1a F1ya

Ž 2 2 Ž 2 . Ž 2 . 2 Ž 2 ..Ž 2 .q z p a q 1yz m a 1ya .Ý
2 1a )1ya

2Ž 1 2 .2 1Let xsx# solve Ý a a , a , x s1.ˆ ˆa ) 1ya

Ž . Ž . 2Ž 2 . Ž . 2Ž 1 2 .It follows from iii that for xg x#, 1 the m a in iv can be replaced with a a , a , x .
1Ž 1 . w .Hence u a , ? is strictly increasing on the interval x#, 1 .

1Ž 1 . 1Ž 1 . 2Ž 2 .Next we show that for some xFx#, u a , x su a , x and m max C s1 for all xFx.
2Ž 1 . w xMoreover, u a , ? is strictly decreasing on the interval x, x# .

2 2 2 2 2� < Ž .Let a smax C and xssup x m a s1 where m is the equilibrium strategy of player 2 in
Ž 1 .4B a , x . First we show that x is well-defined.

1 1 2 1Ž .Note that as x approaches 0, q a , a , x, 1 approaches 1 and since q is strictly decreasing in
2 1 2 2 2 2 2 2 1 2 2Ž . Ž Ž .. Ž .its last argument, by ii u a , a , x, m a approaches a . But for any a , u a , a , ? , ? Fa ;
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2 2 2hence, mimicking a -a cannot be optimal when x is sufficiently small. Since m is continuous in
2 2 1 1 1 1Ž . Ž . Ž .x, m a s1 for xsx. It remains to be shown that u a , x su a , x for all x-x and that

1Ž 1 . w xu a , ? is strictly increasing on the interval x, x# .
2Ž 2 .From the optimality of player 2’s equilibrium strategy it follows that m a )0 impliesˆ

2Ž 1 2 2Ž 2 .. 2Ž 1 2 2Ž 2 .. 2 2Ž 2 . Ž .u a , a , x, m a Gu a , a , x, m a for all a . Therefore, for xFx#, m a )0 and iiˆ ˆ ˆ
imply, for all a 2 gC 2,

a 1 qa 2 y1
1 1 2 2 2 1 1 2 2 2 2Ž . Ž Ž .. Ž Ž ..v q a , a , x , m a Gq a , a , x , m a ? for all a .ˆ ˆ 1 2a qa y1ˆ

2 2 2 2 2 2 2Ž . Ž . Ž .In particular v holds for xsx, a sa , and m such that m a s1 and m a s0 forˆ
2 2 1 1 1 2 2 2 1 1 2Ž Ž .. Ž .a /a . But then for x-x, the monotonicity of q implies q a , a , x, m a )q a , a , x, 1 .

1Ž 1 2 . 1Ž 1 2 2Ž 2 ..Also, q a , a , x, 0 s1Gq a , a , x, m a since a rational agent 1 will concede immediately if
he knows he is dealing with an irrational opponent. Thus, for xFx,

a 1 qa 2 y1
1 1 2 2 2 1 1 2 2 2 2 2Ž Ž .. Ž Ž ..q a , a , x , m a )q a , a , x , m a ? for all a /a .

1 2a qa y1
2 1 2 2 2 1 2 2 2 2 2Ž Ž .. Ž Ž ..Therefore, for x-x, u a , a , x, m a ) a , a , x, m a for all a /a . Hence, the

2 2 2 2 2 2 2Ž . Ž . Ž .optimality of m implies m a s0 for all a /a and m a s1 whenever xFx. Then iv
1Ž 1 . 1Ž 1 .yields the conclusion u a , x su a , x for all xFx.

1Ž 1 . w x 2To prove that u a , ? is strictly increasing on x, x# , we first observe that if m is an
2Ž 2 . 2Ž 2 . 2 2equilibrium strategy, then m a )0 implies m a )0 for all a )a . This is easily verified byˆ ˆ

2 Ž 2 . 2 Ž 1 2 2 Ž 2 .. Ž . 2 Ž 1.noting that if m a s 0, then u a , a , x, m a s 1 y x a q x 1 y a , whileˆ ˆ ˆ
1Ž 1 2 2Ž 2 .. Ž . 2 Ž 1. Ž . 2u a , a , x, m a F 1yx a qx 1ya . Thus, v implies that there exists a such that˜

a 1 qa 2 y1
1 1 2 2 2 1 1 2 2 2 2 2 2Ž . Ž Ž .. Ž Ž ..vi q a , a , x , m a sq a , a , x , m a ? for all a , a Ga ,ˆ ˆ ˆ ˜1 2a qa y1ˆ

a 1 qa 2 y1
1 1 2 2 2 2 2 2Ž Ž ..q a , a , x , m a G for a Ga )a ,ˆ ˜1 2a qa y1ˆ

2 Ž 2 . 2 Ž 2 . 2 2m a s1 and m a s0 for a -a .ˆ ˜Ý
2 2a Gaˆ ˜

Some tedious but straightforward calculations reveal that

Ž 1 2 2 Ž 2 ..K a , a , m a yx
1 1 2 2 2Ž Ž ..q a , a , x , m a s ,1 2 2 2Ž Ž ..Ž .K a , a , m a 1yx

where

Ž 1 2.g a , a1 2 2 2 2 2Ž Ž .. Ž Ž Ž ...K a , a , m a [ y m a

and

2 Ž 1 .r 1ya
1 2Ž .g a , a [ .1 2Ž .r 1ya

Substituting this definition of q1 for both a 2 and a 2 and some simplifying yieldsˆ

Ž 2 2 . 1 2x a ya a qa y1ˆ 1 2 2 2 1 2 2 2Ž . Ž Ž .. Ž Ž ..vii sK a , a , m a yK a , a , m a ?ˆ ˆ1 2 1 2a qa y1 a qa y1ˆ ˆ

for all a 2 )a 2 Ga 2 .ˆ ˜
Ž .Observe that the left-hand side of vii increases as x increases to some x, while the right-handˆ

side does not depend on x. Thus, the equilibrium strategy of player 2 must change as x increases.
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Ž 1 2 . Ž . 2Ž 2 . 2Ž 2 .Furthermore, since K a , a , ? is decreasing, vii implies that either m a decreases or m aˆ
2 2 2 2 2Ž 2 .2 2increases for all a )a . Let a be the largest element of C such that Ý m a )ˆ ˆ ˆa G â

2Ž 2 . 2 Ž 1 . 2
2 2Ý m a where m is player 2’s equilibrium strategy in B a , x . If such an a exists, thenˆ ˆ ˆa G â

2 2 2Ž 2 . 2Ž 2 . 2Ž 2 . 2Ž 2 .for some a -a , we have m a )m a and m a -m a , a contradiction. Therefore,ˆ ˆ ˆ ˆ ˆ
2Ž 2 . 2Ž 2 . 2 2 2

1 2 2 2Ý m a FÝ m a for all a and m /m .ˆ ˆ ˆa G a a G aˆ ˆ
2 2 1Ž 1 . 1Ž 1 . Ž . 2That is, m stochastically dominates m and hence u a , x )u a , x by iv . Continuity of mˆ ˆ

w xpermits us to extend this conclusion to any x, xg x, x# such that x)x.ˆ ˆ
1 ˆ 1Ž .1Again, we characterize equilibrium distributions m as the solution to max F m , wherem

ˆ 1 1 1 1 1Ž . Ž Ž Ž ...F m s min u a , x m a and
1 1 1Ž .a s .t .m a )0

1 1 Ž 1 .z p a
1 1Ž Ž ..x m a s .1 1 1 1 1 1Ž . Ž . Ž .z p a q 1yz m a

1Ž 1 . 1 ŽThe continuity of u a , ? ensures that an equilibrium m exists. See the fixed-point argument
2 Ž 1 . .establishing existence of an equilibrium strategy m in B a , x above.

1 1Let u be the maximized value above. Hence, u is the utility that player 1 attains in any
1 1 1 1 1 1Ž .equilibrium. Clearly, u Gu a , x for all a . Let m , m be two equilibrium strategies for player 1.ˆ

1 1 1 1 1 1 1 1 1 1Ž . Ž . Ž . Ž .If u )u a , x , then m a sm a . To see this note that either u a , 1 )u , in which caseˆ
1 1 1 1 1 1 1 1 1 1 1 1 1Ž Ž .. Ž . Ž . Ž .there is a unique a such that u a , x a su and hence m a sm a sa , or u a , 1 Fu ,ˆ

1Ž 1. 1Ž 1. 1Ž 1 . 1 � 1 1 < 1Ž 1 .in which case m a sm a s0 by the monotonicity of u a , ? . Let D s a gC u a , x sˆ
1 1 1 1 1 1 1 1 14 Ž . Ž .u . Recall that x depends on a . We have already noted that m a sm a for all a gC _ Dˆ

1Ž 1. 1Ž 1.1 1 1 1and hence Ý m a sÝ m a .ˆa g D a g D
1 1 ˜We will conclude the proof that m and m lead to the same random outcome u by first verifyingˆ

that the probability that player 1 chooses some a 1 gD1 and agreement is reached at time 0 is the
same with either m1 or m1. This will imply that the random outcome, conditional on agreement atˆ
time 0 is the same with either m1 or m1. Finally, we show that for each a 1 gD1, the probability thatˆ
a rational player 1 will mimic a 1 and not concede is the same with either m1 or m1.ˆ

Ž 1. 1 1Let A m be the probability that player 1 mimics some a gD and agreement is reached at
1 1 1 2 2Ž .1time 0 given the equilibrium strategy m . Since a gD implies m a s1, it follows thata

1 2 1 2a G1ya ; otherwise player 1 would achieve a higher utility by mimicking max C )1ya . So,

1 1 1 2 1 1 1 1Ž . Ž Ž Ž .. . Ž Ž Ž ...A m s q a , a , x m a , 1 ? 1yx m aÝ
1 1a gD

Ž 1 1 Ž 1 . Ž 1 . 1 Ž 1 ..= z p a q 1yz ?m a

1 2 1 1Ž . Ž Ž ..K a , a , 1 yx m a
1 1 1 1 1 1 1Ž . Ž Ž . Ž . Ž ..A m s z p a q 1yz m aÝ 1 2Ž .K a , a , 11 1a gD

1 1 Ž 1 .z p a
1 1 1 1 1 1Ž Ž . Ž . Ž ..s z p a q 1yz m a y .Ý Ý 1 2Ž .K a , a , 11 1 1 1a gD a gD

1Ž 1. 1Ž 1. Ž 1. Ž 1.1 1 1 1But since Ý m a sÝ m a we have A m sA m .ˆ ˆa g D a g D

For any a 1 gD1, the probability that a rational player 1 will mimic a 1 and not concede at time 0
is

1 1 1 1 2 1 1Ž .Ž Ž Ž Ž .. ..m a 1yq a , a , x m a , 1

1 1 1 2 1 1 1 1 2Ž Ž ..Ž Ž .. Ž .Ž .Ž Ž ..x m a 1yK a , a , 1 p a z 1yK a , a , 1
1 1Ž .sm a s

1 1 1 2 1 1 2Ž Ž Ž ... Ž . Ž . Ž .1yx m a K a , a , 1 1yz K a , a , 1

Hence, this term is independent of m1 and therefore the same for both m1 and m1. Q.E.D.ˆ
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Ž . 1 1 Ž . 1 2 2
1 2 1PROOF OF PROPOSITION 3: a Pick a subsequence of B such that m , F 0 , ¨ , m , ¨n n a , a , n n a , n nk k k k k

1 1 Ž . 1 2 2
1 2 1converge to their respective limits m , F 0 , ¨ , m , and ¨ .a , a a

Ž 1 2 .Without loss of generality assume that the subsequence is the sequence itself. Suppose lim r rrn n
2Ž 1 2 . Ž . 2Ž 1 2 .s0. It follows from the definition of a a , a , x see the preceding proof that lim a a , a , xn

2 Ž .1s0 and hence m Q s1, wherea

1 1 Ž 1 .z p a
x sn 1 1 1 1 1 1Ž . Ž . Ž .z p a q 1yz m an

Ž 1 2 .whenever lim r rr s0. Let xs lim x . Consequently, the payoff associated with mimicking eachn n n
1 Ž 2 . 1 Ž 2 . 1a is at least 1yz a for player 1; hence his equilibrium payoff is at least 1yz max C in the

Ž 1 2 . 1Ž 1 2 2 Ž 2 .. 1
1limit. Now suppose lim r rr s`. Let a a , a , m a be the value of a such thatn n a , n

1Ž 1 2 Ž 1.. 2Ž 1 2 Ž 2 Ž 2 ...1T a , a , x a sT a , a , y m a wherea , n

1 1 Ž 1 .z p a
1Ž .x a s 1 1 1 1 1Ž . Ž .z p a q 1yz a

Ž . 1 1 Ž 1. 2 1and y ? is defined in the previous proof. Then, for a such that m a )0 and any a )1ya ,n
1Ž 1 2 2Ž 2 .. Ž 1 2 2 Ž 2 ..1lim b a , a , x , m a s0. So q a , a , x, m a s1yx. Hence, the conditional probabilityn n a

of 1 conceding after she demands a 1 initially and 2 counters with a 2 is equal to the conditional
probability that 1 is rational. Hence, no matter what 2 demands, 1 concedes if she is rational. But

1 2 2 Ž 1. 2then it must be that after any a , 2 demands max C for sure. Thus, lim inf ¨ G 1yz max C andn
1 Ž 2 . 2 Ž . Ž .hence lim sup ¨ F1y 1yz max C as desired. This proves a . The proof of part b is similarn

and omitted. Q.E.D.

PROOF OF PROPOSITION 4: The proof is organized as follows: First, we characterize the equilib-
Ž .rium payoffs after a history in which only one player reveals himself to be rational Lemma 1 ; then

we argue that the game prior to anyone revealing her rationality is analogous to a war of attrition in
i yr i t Ž i. yr j twhich if i wins she gets a e and j gets 1ya e , where t is the time at which j gives in.

LEMMA 1: For any e)0 'n such that in any sequential equilibrium of g for nGn after any historyn
h such that i is known to be rational and j is not, the payoff to i is at most 1ya j qe and the payoff to jt

j Ž .is at least a ye e¨aluated at time t .

Ž .PROOF: This proof is adapted from the proof of Theorem 8.4 in Myerson 1991 . We will show
that the payoff to j if j continues to act irrationally converges to a j as nª`. This will imply the
desired conclusion. For the remainder of the proof, we assume that j continues to act irrationally
while i conforms with his equilibrium strategy.

Note that z j, the probability that j is irrational after history h , is either zero or no less than z j.t t
This is an immediate consequence of Bayes’ Law. But since z j )0, by assumption we have z j Gz j.t t

Next we will argue that the game ends with probability 1 in finite time, given history h if jt
Ž j. jcontinues to behave irrationally. To see this note that i can always get utility at least 1ya z byt

Ž .seeking almost immediate agreement with the irrational type of player j. On the other hand, if i
ˆuses with positive probability any strategy that could extend the game until period tq t against an

iˆj j yr t jŽ .irrational opponent, then i’s payoff is at most 1yz qz e 1ya . Thus, such a strategy can bet t
optimal only if

iˆj j j j yr t jŽ . Ž .1ya z F1yz qz e 1ya .t t t

That is,

1
jz F [d .t iˆj yr tŽ .Ž .1q 1ya 1ye
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ˆConditional on the game not ending until time tq t, we can repeat the above argument to
conclude that the probability z j must be less than d 2 for player i to optimally follow a strategy att

ˆtime t, which will not concede to the irrational player j until time tq2 t. Similarly, for the game to
ˆ j k klast until time tqkt, it must be that z Fd . But since d goes to zero as k goes to infinity andt

z j Gz j, there will come a kU for which this inequality cannot be satisfied. Thus, player i must endt
Uˆthe game against an irrationally behaving opponent by time tqk t.

Ž .This argument applies to any game g and shows that the game ends in finite time tq t n if jn
behaves irrationally.

Ž .We will now argue that t n converges to zero as n goes to infinity. If this assertion is false, then
Ž .we can find a subsequence of g ’s wlog assume this is the sequence g itself , an «)0, a collectionˆn n

Ž .of histories h , and t n ’s such that the game g conditional on the history h ends at timet n tn n
Ž . Ž .t q t n where t n )« . To simplify the subsequent notation, we will rescale the units of time soˆn

that r j s1 and r i s r. Consider the last e-time units of the game if j continues to behave
Ž .irrationally. It must be that i is using some strategy with positive probability that does not end the

game for at least e longer. Let x be i’s expected payoff if j agrees to an offer worse than a j by time
Ž .be for bg 0, 1 . Let y be i’s payoff if j does not agree to such an offer by time be and let z be the

probability that i assigns to the event that j will not agree to such an offer by time be . Now i’s
rejection of a j implies that

Ž . j Ž .1 1ya F 1yz xqz y.

This implies

xy1qa j

Ž .2 zF whenever xyy)0.
xyy

Note that for j to agree to a payoff less than a j, he must be rational. But then j knows that if he
holds out for e longer, he will get a j. Therefore xF1yeyea j. Similarly, if j does not agree to an

yŽ1 yb .e j yb reŽoffer by be , then the best that i can do after that time is 1ye a . So yFe 1y
yŽ1 yb .e j. je a . Notice that this last inequality implies for e small enough that y-1ya whenever

a j

b) .j jŽ .a q r 1ya

yb reŽ yŽ1 yb .e j. jTo see this note that e 1ye a -1ya if and only if

1yeyb re

ja - .yŽ b rqŽ1yb ..e1ye

Ž .By l’Hospital’s rule, this inequality holds for all eg 0, e whenever

a j

b) .j jŽ .a q r 1ya

Hence, for

a j

b) j jŽ .a q r 1ya

Ž . j Ž . Ž .if 1 is to hold, we must have xG1ya )y. Therefore, 2 holds and from 1 and the above
bounds on x and y we have

jŽ ye .a 1ye
Ž .3 zF j ye yb re j yŽ b rqŽ1yb ..e1ya e ye qa e
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Ž . Ž .for all eg 0, e . Again using l’Hospital’s rule, we find that the right-hand-side of 3 converges to

a j

.jŽ .b rqa 1y r b

j Ž j. jTherefore, since a q r 1ya )a for all r)0, for

a j

bg , 1j jž /Ž .a q r 1ya

Ž . Xand e close to zero, the right-hand side of 3 is less than 1. In particular, we can fix b and choose e
Ž . Ž X .small enough so that the right-hand side of 3 is less than some d-1 for all eg 0, e .

Thus, in the final e amount of time, the probability that player j will continue to behave like an
irrational player during the first b percentage of the time must be less than d . But after be time
elapses, the same argument may be repeated to show that at time t the probability that player j will

Ž .2 2continue to behave irrationally until the final 1yb e amount of time must be less than d .
Ž .kSimilarly, the probability of player j resisting until the final 1yb e amount of time must be less

than d k. Choosing k such that d k -z j establishes a contradiction since, as argued earlier, z j Gz j.t
w ŽThis argument relies on player i being able to make offers sufficiently close to time t q 1y 1yn

.m xb e for ms1, 2, . . . , k. Hence, we need the requirement that g converges to a continuous-timen
game. Q.E.D.

Lemma 1 implies that after a player reveals that he is rational, agreement must be reached
almost immediately, at terms arbitrarily close to the irrational demand of his still possibly irrational
opponent. Hence, as in the continuous-time game we may identify revealing rationality with
conceding to one’s opponent’s irrational demand. This convergence of post-revelation equilibrium
payoffs underlines the convergence of the overall equilibrium.

� 4 � 4Let g be a sequence of discrete bargaining games and s a corresponding sequence ofn n
sequential equilibria.

i iw x Ž .For each s define F : Rª 0, 1 where F t is the cumulative probability that player i takes ann n n
action not consistent with being an irrational type at or before time t, conditional on player j/ i
having acted like an irrational player until time t. To prove the Proposition we will show that:

Ž . Ž 1 2 . Ž .a every subsequence of F , F has a convergent sub -subsequence;n n

Ž . Ž 1 2 .b the limit points of F , F do not have common points of discontinuity;n n
Ž . Ž 1 2 . Ž 1 2 . 1 2c if F , F converges to F , F , and F and F do not have common points of discontinuity,n n

Ž 1 2 .then F , F is an equilibrium of the continuous-time game.
Ž . Ž . Ž . Ž 1 2 .Thus, a , b , and c imply that F , F converges to the equilibrium outcome of the continu-n n

Ž 1 2 .ous-time game. Then, we invoke Proposition 2 to conclude that the limit of F , F is equal ton n
1̂ ˆ2Ž .F , F , the unique equilibrium of the continuous-time game. Also, by Lemma 1 we conclude that

ũ converges in distribution to the equilibrium outcome of the continuous-time game.n

i iŽ .Step 1: There exists n and T such that F t s1yz for all tGT and nGn. This argument isn
Ž U .̂identical to the first part of the proof of Lemma 1 take Tsk t , which establishes that a rational

U Žˆplayer i must concede in finite time k t to an opponent j who persists in irrational behavior i.e.,
j .demands a and accepts no less .

i iŽ . iŽ . Ž i. iDefine the functions G where G t sF t r 1yz . Then the G ’s are distribution functionsN n n n
Ž .without loss of generality truncate the first n terms and renumber the sequence .

� i 4 iStep 2: There exists a subsequence F and a nondecreasing, right-continuous function F suchnk
i Ž . iŽ . iŽ . ithat lim F t sF t at continuity points t of F. Furthermore F t s1yz for all tGT.k nk
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Ž Ž . .PROOF OF STEP 2: Helly’s Theorem see Billingsley 1986 Theorem 25.9 applied to the sequence
G1 yields a subsequence G1 and a right-continuous nondecreasing function G1 such thatn n j

1 Ž . 1Ž . 1 1Ž .lim G t sG t at every continuity point of G . Noting that G T s1 for all n establishes thatn n nj j
1 1 Ž 1. 1 1 Ž 1. 1G is a distribution function. Now, let F s 1yz G and F s 1yz G .n nj j

2 Ž 1 2 . Ž 1 2 .Apply the same argument to the sequence G to get the subsequence F , F and F , Fn n nj j jk k
with the desired properties. Q.E.D.

Ž 1 2 . Ž 1 2 .We will again renumber so that F , F will be F , F .n n n nj jk k
Ž 1 2 . Ž .Steps 1 and 2 establish that every subsequence of F , F has a convergent sub sequence. Stepsn n

3]6 will prove that this limit is an equilibrium of the continuous-time game. In Section 3, we showed
Ž 1 2 .that the continuous-time game has a unique equilibrium. Hence, Steps 1]6 show that F , Fn n

converges to the unique equilibrium of the continuous-time game.

Step 3: F1, F 2 have no common discontinuity points.

PROOF OF STEP 3: Assume to the contrary, that at point t both F1 and F 2 are discontinuous. Let
J i )0 be the size of the discontinuity of F i at t.

w x iLet E s tyD, tqD . Let p be the probability that the first action inconsistent with rationalityD n
will occur in E and that player i undertakes this action.

By choosing D such that tyD and tqD are continuity points of F1 and F 2, we can ensure that

Ž 1 2 . w Ž 1 Ž ..Ž 2 Ž ..xlim p qp s 1y 1yF tqD 1yF tqDn n
nª`

w Ž 1 Ž ..Ž 2 Ž ..xy 1y 1yF tyD 1yF tyD

where the first term is probability that the game ends no later than tqD and the second term is the
probability that the game ends no later than tyD. Hence

Ž 1 2 . 1 Ž . 1 Ž . 2 Ž . 2 Ž .lim p qp sF tqD yF tyD qF tqD yF tyDn n
nª`

1 Ž . 2 Ž . 1 Ž . 2 Ž .yF tqD F tqD qF tyD F tyD

1 2 1 2 Ž . 2 1 Ž . 1 2sJ qJ yJ F tqD yJ F tqD qJ ?JD D D D D D

i iŽ . iŽ .where J sF tqD yF tyD .D

Hence for any e)0, by choosing D sufficiently close to zero, we can ensure that

Ž 1 2 . 1 2 1 2 Ž . 2 1 Ž . 1 2lim p qp FJ qJ yJ F t yJ F t qJ J qe .n n

1 2 Ž 1 2 . 1 2Pick a subsequence of F , F along which both p , p converge to p and p , respectively.n n n n
Hence for any e)0

Ž . 1 2 1 2 1 2 Ž . 2 1 Ž . 1 24 p qp FJ qJ yJ F t yJ F t qJ J qe .

Note that by using a strategy that puts all of the mass J 1 on time tqD player 1 can guarantee thatD

w xthe corresponding probability that 2 is the first to reveal himself to be rational in tyD, tqD is
2Ž 1Ž .. 2Ž 1Ž . 1. 2Ž 1Ž . 1.J 1yF tyD sJ 1yF tqD qJ , which for small D is close to J 1yF t qJ . If theD D D

actual probability p2 with which 2 is the first person to reveal his rationality in E is less thann D
2Ž 1Ž . 1.J 1yF t qJ , the strategy in which 1 waits until tqD will do better for him. Thus it must be

that

2 2 Ž 1 Ž . 1 .p GJ 1yF t qJ ye .

A symmetric argument yields

1 1 Ž 2 Ž . 2 .p GJ 1yF t qJ ye ;
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hence,

1 2 1 2 1 2 Ž . 2 1 Ž . 1 2p qp GJ qJ yJ F t yJ F t q2 J J y2e .

Ž .Thus equation 4 above yields

J 1J 2 y3eF0.

Since this argument can be made for all e , we have J 1J 2 F0, contradicting J 1 )0 and J 2 )0.

Step 4: Let h: R2 ªR1 be a Lebesgue measurable function and let D denote the set ofh
discontinuity points of h. Let m be a sequence of probability measures converging in distribution ton
some probability measure m where m has bounded support. Then m hy1 converges in distributionn

y1 Ž .to mh if m D s0. Hence, Hh dm converges to Hh dm.h n

y1 y1 Ž .PROOF: That m h converges to mh is established in Theorem 29.2 of Billingsley 1986 .n
Ž .Then by Theorem 29.1 of Billingsley 1986 :

lim x dm hy1 s x dm hy1H Hn
R R

Ž Ž . .since m has bounded support, the unboundedness of f x sx is of no consequence .
Also,

x dm hy1 s h dm and similarlyH Hn n2R R

x dm hy1 s h dm ,H H
2R R

which establishes that lim Hh dm sHh dm as desired.n

Step 5: If G1 converges in distribution to G1 and G2 converges in distribution to G2, then m then n n
Ž 2 . 1 2product measure on R associated with G , G converges to m, the product measure associatedn n

with G1 and G2.

Ž Ž . .PROOF: By Skorohod’s Theorem Billingsley 1986 , Theorem 29.6 , there exists probability spaces
Ž i i i. i i iŽ . iŽ .V , FF , P and random variables X , X for is1, 2 such that X v converges to X v at everyn n
v, X i has distribution Gi and X i has distribution Gi.n n

1 2 Ž 1 2 . 1 2 1 2Let VsV =V , FFss FF =FF , and PsP =P the product measure of P and P .
Ž 1 2 . Ž 1 2 . Ž 1 2 .Evidently, X , X converges pointwise to X , X and hence X , X converges in distributionn n n n

Ž 1 2 .to X , X . Q.E.D.

ˆi ˆiStep 6: If G converges to G for is1, 2 andn

ˆ1 ˆ2 ˆ1 ˆ2Ž . Ž . Ž . Ž .G t sG t sG t sG t s0 ; t-0,n n

ˆi ˆiŽ . Ž .G t sG t s1 ; tGT ,n

ˆ1 ˆ2and G and G have no common points of discontinuity, then

i 1 ˆ1 2 ˆ2 i 1 ˆ1 2 ˆ2ŽŽ . Ž . . ŽŽ . Ž . .lim U 1yz G , 1yz G sU 1yz G , 1yz Gn n

where the utility functions have been defined in Section 3. In particular, if t ª t, and t is an
ˆ2 1 2 ˆ2 1 2 ˆ2Ž Ž . . Ž Ž . .continuity point of G , then lim U t , 1yz G sU t, 1yz G and if t is a continuity pointn n

ˆ1 2 1 ˆ1 2 1 ˆ1ŽŽ . . ŽŽ . . Žof G , then lim U 1yz G , t sU 1yz G , t . Recall that the arguments ts t, t etc. aren n n
.shorthand for the degenerate strategy in which the rational type concedes with probability one at t .



D. ABREU AND F. GUL114

PROOF: Let

1 Ž . 2h t , t s1ya if t - t ,1 2 1 2

sa 1 if t ) t ,1 2

1ya 2 qa 1

s if t s t ;1 22

then simple manipulation of the definition of U 1 in Section 3 yields

1 1 ˆ1 2 ˆ2 1 1 ˆ1 ˆ2ŽŽ . Ž . . Ž Ž .. Ž .U 1yz G , 1yz G s 1r 1yz h d G =G .H
ˆi ˆi ˆ1 ˆ2Since G converges in probability to G , Step 5 implies that G =G the product measuren n n

ˆ1 ˆ2 ˆ1 ˆ2converges to G =G . Since G and G have no common points of discontinuity, the set
�Ž . < 4 1 2D [ t , t t s t has zero G =G measure. Since D is the set of discontinuity points of h,h 1 2 1 2 h

Step 4 yields the desired result. Q.E.D.

The following completes the proof of the proposition: For any t)0 and e)0, let s 1 be añ
strategy in g in which player 1 behaves according to s 1 until time t where t is the last timen n n n

2Ž .player 2 makes an offer prior to tqe for some e)0 and at time t player 1 accepts 1ya . Letn
U 1 denote the utility function of player 1 in the game g . Then, there exist integers N 1, N 2, N 3 andn n

2e)0 sufficiently close to 0, such that tqe is a continuity point of F and

1 2 1 2Ž . Ž . Ž .5 U t , F yU tqe , F -e ,
1 2 1 2 1Ž . Ž . Ž .6 U tqe , F yU t , F -e ;nGN ,n n

Ž . 1 Ž 2 . 1 Ž 1 2 . 27 U t , F yU s , s -e ;nGN ,˜n n n n n

Ž . 1 Ž 1 2 . 1 Ž 1 2 .8 U s , s yU s , s F0 ;n ,˜n n n n n n

Ž . 1 Ž 1 2 . 1 Ž 1 2 . 29 U s , s yU F , F -e ;nGN ,n n n n n

Ž . 1 Ž 1 2 . 1 Ž 1 2 . 310 U F , F yU F , F -e ;nGN .n n

Ž . 1 1Ž 2 .Equation 5 follows immediately from the definition of U . That is, U ?, F is continuous at
2 2continuity points of F and if t is not a continuity point of F , then for e small the left-hand side of

2 Ž . Ž .1 is strictly negative. Since tqe is a continuity point of F , 6 follows from Step 6. Equation 7
1 Ž . Ž 1 2 .follows from the definition of s . Equation 8 is the consequence of the fact that s , s is anñ n n

Ž . jequilibrium. Equation 9 is an application of Lemma 1; player i can never get more than 1ya
after revealing herself. Moreover, since her opponent makes offers frequently, she can reveal herself

j Ž . Ž . Ž .to be rational in a manner that guarantees 1ya . Equation 10 follows from Steps 7 and 10 .
� 1 2 34 Ž . Ž .Choosing nGmax N , N , N and adding equations 5 ] 10 yields

1 Ž 2 . 1 Ž 1 2 .U t , F yU F , F -5e .

Since this is true for any e)0, it must be that

1 Ž 2 . 1 Ž 1 2 .U t , F yU F , F F0.

Hence F1 is a best response to F 2 and by a symmetric argument F1, F 2 is the Nash equilibrium
of the continuous-time game. To conclude the proof, note that if player i is the first to reveal himself
to be rational, she can guarantee 1ya j by accepting j’s offer. This would yield j utility a j. If i
reveals herself to be rational in some other way then, by Lemma 1, j is still, in the limit, guaranteed
a j. Thus, the first player i to reveal herself to be rational receives 1ya j and her opponent receives
a j. This can only happen if agreement is reached immediately at these terms. Hence, convergence in

˜expected payoffs implies convergence in distribution to u . Q.E.D.
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Ž 1 2 .2PROOF OF PROPOSITION 5: Without loss of generality, we will assume that m , m convergesn a , n
Ž 1 2 .2to some m , m .a

1Ž 1.Assume m a )0 and

r 2 r1
1 2a ) and a - .1 2 1 2r q r r q r

The key observation is the following: If a 1, a 2 are demanded at time zero, 1 must concede to 2 with
1 Ž 1. 1unconditional probability m a . To see this, recall that b , the conditional probability that 1 does

not concede to 2 must solve

1 1 2 2Ž . Ž .1log p a log p aas2 1 1 2Ž . Ž .r 1ya r 1ya

where

1 1 Ž 1 .z p a
1 1Ž .p a s and1 1 1 1 1Ž . Ž .z p a q 1yz b

2 2 Ž 2 .z p a
2 2Ž .1p a s ;a 2 2 2 2 2 2Ž . Ž . Ž .1z p a q 1yz m aa

that is

Ž 1 . 11yz b
log 1q1 i1 1 1ž /Ž .g rz p a

is where g s .2 i2 2 2Ž . Ž .1g 1ya1yz m aa
log 1q 2 2 2ž /Ž .z p a

1 2 Ž 1 2 . 2 1 Ž 1 2 . 1 2Since a ) r r r q r and a - r r r q r , we have g rg )1.
1Ž 1. 1 2 1But since m a )0 and z and z are converging to 0 at the same rate, b must converge to 0

Ž 1 2 .as well. If the conditional probability of 1 not conceding after a , a is realized, is going to 0, the
1Ž 1.unconditional probability of conceding must go to m a .

2 1 Ž 1 2 .Thus, by choosing any a - r r r q r player 2 can guarantee that his opponent concedes
1 2 Ž 1 2 .immediately if he is rational and has initially demanded a ) r r r q r . If 1 has demanded

1 2 Ž 1 2 . 1 Ž 1 2 .a - r r r q r , then 2 can guarantee at least r r r q r by accepting this demand. Hence 2 can
guarantee a payoff of

r1
2 2 2 2<¨ smax a gC a - .1 2½ 5r q r

A similar argument establishes that player 1 can guarantee ¨ 1. Q.E.D.

PROOF OF PROPOSITION 6: Consider the following artificial constant-sum game: i chooses a i gC i

Ž . i; 0, 1 ; ira wins iff

r i r j

- .i j1ya 1ya

Note that by the genericity assumption there are no ties. We will consistently assume j/ i. The
payoff to i, if he wins, is a i, and j’s payoff, if he loses, is 1ya i.

Let

jŽ i . �� j j < j i4 � j44a a smin a gC a )1ya j max C ;˜
i �� i i < i jŽ i . i jŽ i .4 � 44a smax a gC a qa a )1 and a beats a a j 0 ;ˆ ˜ ˜
i �� i i < i i4 � i44a smin a gC a )a j max C .ˆ ˆq
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We will demonstrate that our artificial constant-sum game has a pure strategy equilibrium
1 2 i i i j iŽ . Ž .a , a . If a is the winner in this equilibrium, we set a sa and a s 1ya . Furthermore, inc c

1 2this equilibrium a qa )1, a fact that simplifies the final step of the proof.
Ž 1 2 . 1 2 1 2The argument is as follows: By assumption there exists a , a gC =C such that a qa )1.

j jŽ i. 1 2Furthermore, we may assume that this pair satisfies a qa a , is1, 2. Suppose a beats a .˜
Then clearly a 1 )0. Thus a i )0 for some is1, 2.ˆ ˆ

1 Ž 1 2Ž 1.. 1 1Suppose a )0 and a , a a is not an equilibrium. Then it must be the case that a )aˆ ˆ ˜ ˆ ˆ ˆq
1 2Ž 1. 1 2Ž 1 . 1 2 ) � 2 2 < 2and a beats a a . By the definition of a , a a beats a . Let a smax a gC a beatsˆ ˜ ˆ ˆ ˜ ˆ ˆq q q

1 4 Ž 1 2 ) .a . Clearly a , a is an equilibrium. Thus, we have demonstrated the existence of anˆ ˆq q
equilibrium with the required properties.

1 2 1 1To complete the proof, suppose that a beats a . By the argument above a )a implies

r1 r 2

)1 21ya 1ya

1 1 1 1Ž .and hence from the proof of Proposition 5, it follows that if m a )0 and a )a , conditional on
1 2 1a being demanded in period 0, 2 can guarantee himself at least a )1ya . This means that 1’s

1 1payoff is strictly less than a . Again, by the argument of Proposition 5, by demanding a , 1 can
1 1 1guarantee a and also by demanding less than a , 1 guarantees that her payoff will be less than a .

1 1 1 1Ž .So m a s1. Since 1 guaranteed herself a , 2 cannot get more than 1ya , which he can get by
1 1Ž .accepting 1’s initial offer. Hence, the equilibrium payoffs converge to a , 1ya . The argument for

2the case where a is the winner, is very similar, and is omitted. Q.E.D.

REFERENCES

Ž .ABREU, D., AND F. GUL 1992 : ‘‘Bargaining with Obstinate Opponents,’’ Mimeo.
Ž .ADMATI, A. R., AND M. PERRY 1987 : ‘‘Strategic Delay in Bargaining,’’ Re¨iew of Economic Studies,

54, 345]364.
Ž .AOYAGI, M. 1996 : ‘‘Reputation and Dynamic Stackelberg Leadership in Infinitely Repeated

Games,’’ Journal of Economic Theory, 71, 378]393.
Ž .AUSUBEL, L., AND R. DENECKERE 1989 : ‘‘Reputation in Bargaining and Durable Goods Monopoly,’’

Econometrica, 57, 511]531.
Ž .}}} 1992 : ‘‘Durable Goods Monopoly with Incomplete Information,’’ Re¨iew of Economic

Studies, 59, 795]812.
Ž .BILLINGSLEY, P. 1986 : Probability and Measure. New York: John Wiley & Sons, Inc., pp. 345 and

392.
Ž .CELENTANI, M., D. FUDENBERG, D. LEVINE, AND W. PESENDORFER 1996 : ‘‘Maintaining a Reputa-

tion against a Long-Lived Opponent,’’ 64, 691]704.
Ž .CELENTANI, M., AND W. PESENDORDER 1996 : ‘‘Reputation in Dynamic Games,’’ Journal of Eco-

nomic Theory, 70, 109]132.
Ž .CHATTERJEE, K., AND L. SAMUELSON 1987 : ‘‘Bargaining with Two-Sided Incomplete Information:

An Infinite-Horizon Model with Alternating Offers,’’ Re¨iew of Economic Studies, 54, 175]912.
Ž .}}} 1988 : ‘‘Bargaining Under Two-Sided Incomplete Information: The Unrestricted Offers

Case,’’ Operations Research, 36, 605]618.
Ž .CHO, I. 1990 : ‘‘Uncertainty and Delay in Bargaining,’’ Re¨iew of Economic Studies, 57, 575]596.

Ž .COMPTE, O., AND P. JEHIEL 1995 : ‘‘On Stubborness in Negotiations,’’ Mimeo.
Ž .CRAMTON, P. 1984 : ‘‘Bargaining with Incomplete Information: An Infinite Horizon Model with

Continuous Uncertainty,’’ Re¨iew of Economic Studies, 51, 579]593.
Ž .}}} 1987 : ‘‘Strategic Delay in Bargaining with Two-sided Uncertainty,’’ Mimeo, Yale Univer-

sity.
Ž .CRAWFORD, V. 1982 : ‘‘A Theory of Disagreement in Bargaining,’’ Econometrica, 50, 607]638.

Ž .CRIPPS, M., K. SCHMIDT, AND J. THOMAS forthcoming : ‘‘Reputation in Perturbed Repeated
Games,’’ Journal of Economic Theory.



BARGAINING AND REPUTATION 117

Ž .FUDENBERG, D., D. LEVINE, AND J. TIROLE 1985 : ‘‘Infinite Horizon Models of Bargaining with
Incomplete Information,’’ in Game Theoretic Models of Bargaining, ed. by A. E. Roth. Cambridge:
Cambridge University Press, 73]98.

Ž .GROSSMAN, S., AND M. PERRY 1986 : ‘‘Sequential Bargaining Under Asymmetric Information,’’
Journal of Economic Theory, 39, 120]154.

Ž .GUL, F., AND H. SONNENSCHEIN 1988 : ‘‘On Delay in Bargaining with One-sided Uncertainty,’’
Econometrica, 56, 601]612.

Ž .GUL, F., H. SONNENSCHEIN, AND R. WILSON 1986 : ‘‘Foundations of Dynamic Monopoly and the
Coase Conjecture,’’ Journal of Economic Theory, 39, 155]190.

Ž .HENDRICKS, K., A. WEISS, AND C. WILSON 1988 : ‘‘The War of Attrition in Continuous-Time with
Complete Information,’’ International Economic Re¨iew, 29, 663]680.

Ž .KAMBE, S. 1994 : ‘‘Bargaining with Imperfect Commitment,’’ Mimeo, Oxford University.
Ž .KREPS, D. M., AND R. WILSON 1982 : ‘‘Reputation and Imperfect Information,’’ Journal of Economic

Theory, 27, 253]279.
Ž .MILGROM, P., AND J. ROBERTS 1982 : ‘‘Predation, Reputation, and Entry Deterrence,’’ Journal of

Economic Theory, 27, 280]312.
Ž .MYERSON, R. 1991 : Game Theory: Analysis of Conflict. Cambridge, MA: Harvard University Press.

Ž .ORDOVER, J., AND A. RUBINSTEIN 1986 : ‘‘A Sequential Concession Game with Asymmetric
Information,’’ Quarterly Journal of Economics, 51, 879]888.

Ž .OSBORNE, M. A. 1985 : ‘‘The Role of Risk Aversion in a Simple Bargaining Model,’’ in Game
Theoretic Models of Bargaining, ed. by A. E. Roth. Cambridge: Cambridge University Press,
181]214.

Ž .PERRY, M., AND P. RENY 1993 : ‘‘A Non-cooperative Bargaining Model with Strategically Timed
Offers,’’ Journal of Economic Theory, 59, 50]77.

Ž .PONSATI, C., AND J. SAKOVICS 1995 : ‘‘The War of Attrition with Incomplete Information,’’
Mathematical Social Sciences, 29, 239]254.

Ž .ROSENTHAL, R. 1981 : ‘‘Games of Perfect Information, Predatory Pricing and the Chain-Store
Paradox,’’ Journal of Economic Theory, 25, 92]100.

Ž .RUBINSTEIN, A. 1982 : ‘‘Perfect Equilibrium in a Bargaining Model,’’ Econometrica, 54, 97]109.
Ž .}}} 1985 : ‘‘A Bargaining Model Under Incomplete Information,’’ Econometrica, 53, 1151]1172.

Ž .SELTEN, R. 1977 : ‘‘The Chain-Store Paradox,’’ Theory and Decision, 9, 127]159.
Ž .SCHMIDT, K. M. 1993 : ‘‘Reputation and Equilibrium in Finitely Repeated Games,’’ Econometrica,

61, 325]351.
Ž .SOBEL, J., AND I. TAKAHASHI 1983 : ‘‘A Multistage Model of Bargaining,’’ Re¨iew of Economic

Studies, 50, 411]426.
Ž .WATSON, J. 1998 : ‘‘Alternating-Offer Bargaining with Two-Sided Incomplete Information,’’ Re¨iew

of Economic Studies, 65, 573]594.


