Programs: Brian Kovaric Fund
This annual summer support fund has been established by the Kovaric family in memory of Brian (Haverford Chemistry ’05.) The fund will support one first year / rising sophomore as a summer research student in the natural sciences for a 10 week appointment.
The student is required to present a poster at the end of the summer and to write a letter of thanks to the family (which can be sent through the Provost or Institutional Advancement).
To reflect Brian’s contributions to our community, we consider students who are original thinkers and who love science.
Nomination Process
Department faculty are asked to consider nominations for the Brian Kovaric Fund, with a deadline in mid-February. The nominees then will be asked to submit their transcript and a short paragraph answering the following question: "Write a paragraph or two describing why you would like to be part of a research lab at Haverford this coming summer, and how this experience could benefit you in your future studies and in life after Haverford." We will consider the applications and make a decision about the award shortly after the deadline.
Award Recipients
-
Matthew Holmes, '15 (Schrier laboratory)
During his Kovaric Fellowship, Matthew worked with the Chemistry Department’s Professor Joshua Schrier, a computational chemist. Under Professor Schrier’s mentorship, Matthew worked with a number of theoretical nanoporous graphene structures previously theorized by the Schrier group. He used quantum molecular modeling methods – including the Vienna Ab initio Simulation Package (VASP) – in order to determine mechanical properties of these structures. He was able to study this exciting and emerging field in materials science by utilizing supercomputing resources at the United States Department of Energy’s National Energy Research Scientific Computing Center (NERSC). Using these resources, Matthew simulated the application of strain along perpendicular axes in the plane of different two-dimensional carbon sheets. He then analyzed these three-dimensional data sets in order to determine the in-plane stiffness and Poisson’s ratio of these structures.
-
Ishita Dhawan, '14 (Londergan laboratory)
As a Kovaric fellow, Ishita spent the summer working in Casey Londergan’s physical chemistry laboratory on two projects. Ishita explored the functionality of an azide in different solvent environments through infrared spectroscopy as well as temperature dependent infrared spectrometers. Through her research combined with other students’ efforts, Professor Londergan was able to publish a paper in the Journal of Physical Chemistry called “Covalently Bound Azido Groups Are Very Specific Water Sensors, Even in Hydrogen-Bonding Environments,” which discussed the azide’s behavior especially concerning the water environment which caused several shifts. Ishita also worked on a project meant to study the conformational changes in calcium bound calmodulin, which is expressed in many cell types and mediates several bodily functions. Ishita’s tasks for the summer were to place a mutation in a strand of calmodulin DNA, transform the DNA into an E. coli cell line, and then express the mutated protein. Once those steps were completed, purification was performed using DEAE, phenyl sepharose, and superdex columns.
-
Marjon Zamani, '13 (Smith laboratory)
During her Kovaric fellowship, Marjon researched the solar cell activity of self-assembled porphyrin nanowires. Porphyrins are abundant in nature; examples include the photoactive portion of chlorophyll and the core of hemoglobin. We have found that a particular porphyrin variant self-assembles into nanowires when the solution pH is lowered. These nanowires show a weak solar cell effect, which is very surprising, given that there is no designed-in asymmetry. (Asymmetry is required because the solar cell must pump current in a well-defined direction.) Marjon has shown that the required asymmetry can be imparted by applying a bias voltage across the nanowires. This apparently rearranges trapped charges, either within the nanowires or in the underlying substrate, and the charges stay in place for hours after the bias voltage is removed. Marjon continued this research during her sophomore academic year, and it is now the subject of the senior thesis of another student, Katherine van Aken. In summer 2011, Marjon sampled a new area of research with Prof. Suzanne Kane, using physics to model the behavior of flocks of small birds as they attack large predator birds. She will continue this work in summer 2012, and develop it into a senior thesis project.
-
Samuel Blau, '12 (Norquist laboratory)
During his Kovaric fellowship, Sam studied the use of chiral organic amines for the preparation of new noncentrosymmetric gallium fluorophosphates. Specifically, he probed the relationship between compounds containing racemic and enantiomerically pure amines, and studied the nonlinear optical activities of two new functional materials. Sam, currently a senior chemistry major, has continued to study a range of organically templated metal oxides in the Norquist laboratory using both experimental and theoretical techniques. Specifically, Sam has studied physical phase transitions in templated gallium phosphates and formation mechanisms of both centrosymmetric and noncentrosymmetric vanadium tellurites. He has performed some of the first calculations of electron localization functions and iterative-Hirshfeld partial atomic charges for templated metal oxides. His work has resulted in five peer-reviewed publications. Sam was an HHMI scholar during the summer of 2010.
-
Asha Mahajan, '11 (Punt laboratory)
As a Kovaric fellow, Asha worked in the Punt lab in the summer of 2008 delving into the biochemistry of a phosphatase that is believed to regulate life and death decisions in T cells. Her work became an integral part of the research of two senior thesis students (2010 graduates) who incorporated her findings that immature and mature T cells expressed different regulatory subunit. Asha became a Chemistry major and Biochemistry concentrator with a continued interest in biomedical research. She was a successful applicant for a summer internship program in 2010 at the University of Pennsylvania, where she pursued her interest in immunology with one of Punt's colleagues, Dr. Terri Laufer. She presented this work to us at our Summer Research Symposium on October, 2010. Asha is currently enrolled in the School of Medicine at NYU.
- Martin Blood-Forsythe, '10 (Smith Laboratory)
-
During the summer supported by his Kovaric fellowship, Martin worked on construction of a system for measuring the photoelectronic properties of organic nanowires, with variable temperatures and variable wavelength illumination. The system can reach temperatures from 100 K to 350 K, with illumination from 380 nm to 1200 nm, under a vacuum of better than 10-10 Torr, and can measure current flowing through the sample with a noise level of less than 0.01 pA. Martin also used atomic force microscopy to image samples of porphyrin nanotubes provided by our collaborators. We are now using the system Martin helped to build, examining the photoconductivity of self-assembled porphyrin nanowires. Martin is now a Churchill Scholar at Cambridge University, and next year will begin the Ph.D. program in physics at Harvard.
-
Justin Meyerowitz, '09 (Wagner Laboratory)
During his Kovaric fellowship, Justin used yeast as a model for gaining insight into aging and cancer in humans. He studied a protein factor in yeast that controls cell growth that has a human homolog. He worked in the Fairman laboratory for his senior thesis project, developing spectroscopic probes for the study of a peptide model system of Huntington's disease. The title of his thesis is "Developing Fourier transform infrared spectroscopy to determine the mechanisms of polyglutamine aggregation". Justin was also an HHMI scholar and graduated from Haverford with honors in Biology. He is currently an MDPhD student in the MSTP program at UCSF, and is pursuing his PhD in the Chemistry and Chemicial Biology graduate program. He is serving as the UCSF Chapter President for the American Medical Association.
Submissions and Information
Inquiries can be directed to: Tim McLean (KINSC Program Coordinator) or Robert Scarrow (KINSC Director)







