For information about Web accessibility, please contact the Webmaster at

Haverford College

2011-12 Course Catalog

Natural Sciences: Biology, 2011-12

DescriptionFacultyMajor RequirementsCoursesDepartment Homepage


Our understanding of the structure and function of living organisms at the cellular and molecular levels is evolving rapidly. The lines traditionally used to demarcate the areas of genetics, biochemistry, microbiology, cell biology and physiology have dissolved in the research laboratory as well as in clinical practice. This necessitates an approach to the teaching of biology that emphasizes the common molecular basis of these disciplines and the involvement of students in the process of discovery so that they have the conceptual tools to both follow and contribute to the rapid advance of knowledge and understanding.

Students interested in learning about biology but not intending to major in this field can enroll in our Perspectives in Biology courses. These are appropriate for students from all backgrounds and disciplines and are separate from the major track.

Students interested in majoring in Biology must complete a one credit natural science course (which includes a laboratory experience) at Haverford, Bryn Mawr or Swarthmore College in their first year; appropriate choices include chemistry, physics, geology or computer science. The first course in the Biology major curriculum is Cell Structure and Function, taken in the sophomore year. The junior year curriculum consists of two laboratory courses and a suite of half-semester lecture courses. In the senior year, students participate in a research tutorial pursuing original research and reading and reporting on the current literature under the supervision of a faculty mentor, culminating in a written senior thesis. Seniors also enroll in an advanced seminar course in which scientific reviews and articles drawn from the primary literature are examined and discussed in detail. These courses are designed to immerse students in contemporary developments in a particular area of cell, molecular or developmental biology and are intended to develop critical faculties as well as creative talents. Senior Department Studies is a half credit course in which seniors participate in an external seminar program and present their research to the Department.

Several interdisciplinary Areas of Concentration are supported within the Biology major, including Biochemistry, Biophysics, Scientific Computing, and Neural and Behavioral Sciences. A free-standing minor in Environmental Studies is also available. Students wishing to combine the Biology major with another major may do so in accordance with college guidelines for double majors. Such students must complete the full requirements of the biology major, including the senior thesis. At the present time, the Biology Department does not offer a minor in Biology.

Students may substitute upper-level Bryn Mawr biology courses for certain requirements of the Haverford Biology major with prior faculty approval. However, Bryn Mawr Biology 100-level classes cannot be substituted for the major requirement of Biology 200a and 200b.

Students interested in pursuing careers in medicine, public health or related fields should consult with the Pre-Health Advisor regarding their course selections.

Back to Top


Professor Slavica Smit Matacic, Emeritus
Professor Melvin Santer, Emeritus
Elizabeth Ufford Green Professor of Natural Sciences Judith A. Owen
Professor Robert Fairman
Professor Karl Johnson, Chair
Professor Philip Meneely
Professor Jennifer Punt
Associate Professor Andrea Morris
Associate Professor Iruka Okeke
Assistant Professor Rachel Hoang
Assistant Professor Jon Wilson
Lab Instructor Katherine Heston

Back to Top

Major Requirements

  1. Both semesters of Biology 200a and 200b. Successful completion of a one credit natural science course (which includes a laboratory experience) at Haverford, Bryn Mawr or Swarthmore College is a prerequisite for enrolling in Biology 200a.
  2. A minimum of a one credit chemistry course (with associated lab).
  3. At least one semester of advanced coursework (200 level or higher) in a natural sciences department other than Biology. Courses cross-listed in Biology may not be counted toward this requirement.
  4. Two semesters of the junior laboratory, Biology 300a and 300b.
  5. Four half-semester 300-level advanced topics courses (selected from Biology 301-315 and 331-332). Occasionally, an upper-level course from Bryn Mawr or Swarthmore may substitute for one or two of the half semester lecture courses, but only with the specific permission of the student's major advisor. Students are encouraged to take additional topics classes beyond the minimum of four to enhance their biology experience.
  6. One half-semester 350-level seminar course in the Haverford Biology Department (chosen from Biology 350-365; no substitutions permitted). Students may take additional seminar courses to enrich their knowledge of the discipline.
  7. A minimum of two 400-level Senior Research Tutorial credits, generally taken over both semesters of the senior year, including active participation in weekly lab meetings and submission of a notebook and a thesis describing the progress and results of the project. The tutorial may be taken for single or double credit each semester.
  8. Senior Department Studies, Biology 499.

Alternative curricula within the major are offered to students interested in interdisciplinary studies within the science division. These are encompassed within the Areas of Concentration in Biochemistry, Biophysics, Neural and Behavioral Sciences (NBS), and Scientific Computing. In these interdisciplinary programs, a student may major in Biology and take an enhanced selection of courses to fulfill the requirements of the Biology Major and their concentration. Further information is given under individual program descriptions for the relevant Areas of Concentration. Also, equivalencies for certain major requirements may be granted by the Department to Biology majors participating in study away programs during the junior year, depending upon the specific program and coursework undertaken.

In addition to the required courses, the Biology Department strongly recommends a year of physics, a course in probability and statistics, and advanced coursework in chemistry (through Physical Chemistry or equivalent).

Back to Top



No prerequisites. Not open to students who have taken HC Bio 200 or BMC Biology 100 level courses.

123 Perspectives in Biology: Scientific Literacy NA

An introduction to current topics through reading and discussion of articles from the primary and popular literatures. Our texts will include Science, Nature and The Science Times. We will follow new breakthroughs and discoveries as they are reported and consider both evolution and revolution in scientific thought in real time from the viewpoint of the larger scientific community. One half semester. Enrollment limited to 30. Prerequisite: Lottery preference to Freshmen and Sophomores. Students must register for both Perspectives classes paired in a given semester to qualify for the single lottery that will be run for both classes. Does not count toward the major.

124 Perspectives in Biology: Tropical Infectious Disease NA (Cross-listed in African and Africana Studies)

An examination of factors that contribute to the emergence and endemicity of selected infectious diseases in tropical developing countries, with a focus on diseases where transmission routes are unique to tropical developing countries or unknown. Examples will include waterborne, vaccine-preventable and zoonotic (animal transmitted) infections. Course participants will examine the microbiological, epidemiological and public health factors that control the emergence or persistence of infectious diseases in the tropics. One half semester. Enrollment limited to 30. Prerequisite: Lottery preference to Freshmen and Sophomores. Students must register for both Perspectives classes paired in a given semester to qualify for the single lottery that will be run for both classes. Does not count toward the major.

125 Perspectives in Biology: Genetic Roil and the Royal Families NA

Family pedigrees reveal the inherited nature of a variety of human conditions and provide a powerful way to identify individual genes and to study the molecular consequences of mutation, particularly through the development of specific diseases, such as hemophilia and porphyria. The Royal Families of Europe offer well-documented family histories in which frequent intermarriages provide unparalleled and often tragic glimpses into both the genetic and molecular basis of disease and other aspects of the human condition. One half semester. Enrollment limited to 30. Prerequisite: Lottery preference to Freshmen and Sophomores. Students must register for both Perspectives classes paired in a given semester to qualify for the single lottery that will be run for both classes. Does not count toward the major.

127 Perspectives in Biology: Human Genetic Diversity NA

A major scientific milestone marking the start of the 21st century was the publication of the human genome sequence. With the subsequent reading of many human genomes, comparisons reveal clues to the natural history of the human species. Starting with basic concepts of human genetics and topics such as natural selection, founder effects and genetic drift, the course will examine issues of human origins and migrations, diversity and the relationship between different populations and ethnic groups. One half semester. Enrollment limited to 30. Prerequisite: Lottery preference to Freshmen and Sophomores. Students must register for both Perspectives classes paired in a given semester to qualify for the single lottery that will be run for both classes. Does not count toward the major.

128 Perspectives in Biology: How Do I Know Who I Am? NA

The capacity of the body to recognize its own cellular and molecular components underlies the functioning of a successful immune system capable of recognizing and appropriately handling invasion and neoplasm. Some emphasis will be placed on how this problem has been differentially solved by phylogenetically disparate organisms. One half semester. Enrollment limited to 30. Prerequisite: Lottery preference to Freshmen and Sophomores. Students must register for both Perspectives classes paired in a given semester to qualify for the single lottery that will be run for both classes. Does not count toward the major.

129 Perspectives in Biology: The Vexations of Vaccines NA

Vaccines exploit the memory of our immune systems, specifically their ability to produce an overwhelming defensive response to the second exposure to a pathogen. First used as a treatment for smallpox by Chinese and Turks in the 15th century, vaccination is now the cornerstone of preventative health programs and has eradicated some diseases worldwide. In this course, we will discuss the history of vaccination, its biological and cellular bases and the difficulties involved in generating vaccines for current scourges. Finally, we will critically evaluate the controversies surrounding vaccination in some communities. One half semester. Enrollment limited to 30. Prerequisite: Lottery preference to Freshmen and Sophomores. Students must register for both Perspectives classes paired in a given semester to qualify for the single lottery that will be run for both classes. Does not count toward the major.

130 Perspectives in Biology: Origins-Evolution and Animal Diversity NA

This course will explore the history and theory of evolution. Key concepts will be introduced as we consider a range of topics from Darwin, "selfish genes," the origin of man, the way "origins" are viewed in a variety of cultures, arguments for and against evolution, and some of the implications that evolutionary theory has for society. One half-semester. Enrollment limited to 30. Prerequisite: Lottery preference to Freshmen and Sophomores. Students must register for both Perspectives classes paired in a given semester to qualify for the single lottery that will be run for both classes. Does not count toward the major.


122 Writing in Public Health NA (Cross-listed in Writing Program)

Prerequisite: Open only to first-year students as assigned by the Director of College Writing. (Satisfies the first year writing requirement.) Does not count toward the major.

187 Scientific Computing: Discrete Systems NA (Cross-listed in Computer Science)

Prerequisite: One semester of any (social or natural) science is recommended. Offered occasionally.

217 Biological Psychology NA (Cross-listed in Psychology)

Prerequisite: An intro course in Psychology or Biology or consent.

220 Unlocking Key Concepts in Biology NA

A course for Bio 200 students designed to teach the principles and methods of biological investigation. Students are taught how biological hypotheses are identified, developed and tested and how biological data are articulated, analyzed and interpreted. The class meets once a week during the semester and draws material from current literature, groundbreaking classical experiments and concurrent topics in Bio 200. Enrollment by invitation from the Department. Prerequisite: Concurrent enrollment in Biology 200 and consent.

221 The Primate Origins of Society SO (Cross-listed in Psychology)

Prerequisite: An intro course in one of the following: Anthropology, Biology, Psychology or Sociology, or consent.


200 Cell Structure and Function NA

Various/K.Heston Three hours of lecture and one laboratory period per week. A one-year course in cellular and molecular biology. Biology 200 considers the cell as a unit of biological activity. There is an introduction to the major macromolecules of the cell which includes a discussion of their synthesis and breakdown and a section on the gene as a unit of biological information and the flow and transmission of genetic information. The laboratory introduces the student to cell and molecular biology, biochemistry and genetics. Enrollment per lab section is limited to 32. Prerequisite: The prerequisite for Biology 200a is successful completion of a one credit Natural Science course (which includes a laboratory experience) at Haverford, Bryn Mawr or Swarthmore. The prerequisite for Biology 200b is successful completion of Biology 200a or consent.

300 Laboratory in Biochemistry and Molecular Biology NA (Cross-listed in Chemistry)

One lecture and two laboratory periods per week. An introduction to the application of modern experimental approaches in the study in interesting biological questions. Techniques employed are drawn from: cloning and nucleic acids (DNA and RNA) manipulation, including polymerase chain reaction (PCR) and site-directed mutagenesis; protein expression, purification and characterization, with emphasis on circular dichroism and fluorescence spectroscopy; immunofluorescence, confocal and electron microscopy; and fluorescence-activated cell sorting (FACS) analysis. Enrollment limited to 40 (20 per section). If more than 40 students request enrollment, preference will be given to Haverford Biology majors and then to non-majors enrolled in the Areas of Concentration in Biochemistry and Biophysics. Prerequisite: Biology 200 or consent.

301 Advanced Genetic Analysis NA

The molecular mechanisms governing the transmission, mutation and expression of genes. Particular emphasis is placed on the use of experimental genetic methods to analyze other areas of biology. Prerequisite: Biology 200 or consent.

302 Cell Architecture NA

An examination of cellular structure and function. Topics include the eukaryotic cytoskeleton and endomembrane systems, with particular emphasis upon the dynamic qualities of living cells. Prerequisite: Biology 200 or consent.

303 Structure and Function of Macromolecules NA

A study of the structure and function of proteins, including enzymes, assembly systems and proteins involved in interactions with nucleic acids and membranes. Prerequisite: Biology 200 & Chemistry 221 or equivalent to be taken previously or concurrently or consent.

304 Biochemistry: Metabolic Basis of Disease and Adaptation NA

This course will introduce students to advanced biosynthetic processes associated with carbohydrate, nucleic acid, protein and lipid metabolism. A coverage of the pathways and the experiments which defined them will be accompanied by discussions of their direct relevance to disease, abnormality and evolutionary adaptation. Prerequisite: Biology 200 or consent.

306 Inter- and Intra-Cellular Communication NA

A study of the mechanisms by which individual cells in a multicellular organism communicate via the exchange of molecular signals. The course will focus on the release of molecular messengers, their interactions with specific receptor-bearing target cells of appropriate responses such as increased metabolic activity and/or cell division. Considerable attention is paid to the biochemistry of plasma and internal cell membranes and pathways are discussed from a disease perspective. Prerequisite: Biology 200 or consent.

307 The Cell in Development NA

The development of selected model organisms, both invertebrate and vertebrate, is used to examine the principles of fertilization, cleavage, gastrulation, morphogenesis, and pattern formation. Mechanisms by which genetic information is stored, segregated and activated during cell determination and differentiation are explored. Prerequisite: Biology 200 and 301 or consent.

308 Immunology NA

This course will provide an introduction to the rapidly expanding discipline of immunology. Students will learn about the molecular and cellular basis of the immune response through the study of the genetics and biochemistry of antigen receptors, the biochemistry of immune cell activation, the cell physiology of the immune system, immune memory, immune tolerance induction and immune-mediated cell death. Prerequisite: Biology 200 or consent.

309 Molecular Neurobiology NA

This course will focus on molecular approaches to study nervous system development, function and pathology. Topics including the generation of neurons and glia, electrical signaling, learning and memory and Alzheimer's disease will be discussed using examples from a variety of model systems. Prerequisite: Biology 200 or consent.

310 Molecular Microbiology NA

A study of prokaryotic biology with emphasis on cell structure, gene organization and expression, which will incorporate selected readings from the primary literature. Topics include the bacterial and viral cell structure, the genetics of bacteria and bacteriophage, gene regulation, horizontal gene transfer and microbial genomics. The course will be taught via lecture, class presentation and discussion, and workshops. Prerequisite: Biology 200 or consent.

312 Development & Evolution NA

This course introduces important links between developmental and evolutionary biology. Genetic changes that produce variations between organisms are an important aspect of evolutionary change. Since development can be viewed as the process that links genetic information to the final form of an organism, the fields of development and evolution clearly impact one another. We will look at Drosophila and zebrafish, where developmental mechanisms have been elucidated in remarkable detail. We will then look beyond these model systems to comparative studies that examine development in a range of organisms, considering how these provide insight into evolutionary mechanisms, and how underlying differences in development may account for the differences we see between organisms. Prerequisite: Biology 200 or consent.

314 Photosynthesis NA (Cross-listed in Biochemistry)

A study of the function, origins and history of photosynthesis on Earth, from bacteria to plants. This course will begin with a survey of photosynthetic metabolisms, explore photosynthetic microbial diversity and investigate the evolution of terrestrial plants through the fossil record. Prerequisite: Biology 200 or consent.

331 Computational Genomics NA/QU

Complete DNA sequence information is now available for hundreds of species. Computer-based comparisons of genes or genomes between different species are routine for many biological investigations. This course uses a lecture and workshop format to introduce students to the evolutionary and computational basis for such comparisons, as well as the statistical tools to evaluate these comparisons. Prerequisite: Biology 301 required; Biology 303 recommended; some familiarity with statistics and probability. Permission of instructor required.

332 Biological Networks and Systems NA/QU

Biological molecules interact in complex ways. Genomic analysis has identified many of the genes and gene products that comprise the component parts of an organism. This course discusses how the interactions among these molecules are studied and what properties of the biological system emerge from the complex networks of interactions. Prerequisite: Biology 301 or consent.


330 Laboratory in Neural and Behavioral Science: Molecular Development NA

A half-semester lab course introducing molecular and cellular approaches to understanding the development of the nervous system. A variety of model organisms will be used to investigate neural induction, patterning, neural crest cell migration and axon guidance. Prerequisite: Biology 200 or consent of instructor.

350 Pattern Formation in the Nervous System NA

A fundamental process in the development of the vertebrate nervous system is the partitioning of nervous system into distinct domains of cellular differentiation, for example the brain vs. the spinal cord. This seminar course will explore, through a series of student research article presentations, the molecular processes by which pattern is established in the nervous system and the morphological consequences of improper patterning. Human birth defects and pathologies such as spina bifida and brain tumors will be used as case studies to discuss the role of crucial patterning genes and signaling molecules. Enrollment limited to 15 students. Prerequisite: Biology 309 or consent.

351 Molecular Motors and Biological Nano-Machines NA

The world of the cell contains a rich array of molecular machinery that carries out life's dynamic processes. Interdisciplinary studies of these mechanisms employing a variety of biological, chemical and physical approaches are revealing a wealth of detail spanning from visible phenomenon to the scale of atoms and molecules. Extensive reading of the primary literature will be used as a basis for student-led discussions. Topics will be selected from a list including viral assembly, cellular clocks, mechanoenzyme engines, biosynthetic machinery and the assembly and regulation of cytoskeletal arrays. These systems provide novel insights into how work is accomplished (and regulated) in a nano-scale environment and serve as models for the development of nanotechnologies for science and medicine. Enrollment limited to 15 students. Prerequisite: Biology 302 or consent of instructor.

352 Cellular Immunology NA

Topics include description and classification of the cells and tissues of the immune system; cell collaboration in the immune response; transplantation antigens and their role in graft rejection and recognition of virally-infected cells; immune tolerance; lymphokines. There will be student presentations of articles in the original immunological literature, followed by critical discussion. Enrollment limited to 15 students. Prerequisite: Biology 300b, 308 or consent.

353 Apoptosis: A Matter of Life and Death NA

Cell death is as important to an organism as cell differentiation and proliferation. In order to shape organs, limbs and digits; form neural pathways; build a useful repertoire of specificities in the immune system; and start and stop inflammatory reactions, an organism needs to be able to regulate cell death via a highly regulated process we call apoptosis. A lack of regulation between cell death and proliferation underlies many disease states, including cancer and AIDS. In this course we will explore current advances in our understanding of the molecular basis for cell death (apoptosis), its regulation, its relationship to cell differentiation and proliferation, and its role in disease processes. The material will be presented in seminar format where primary literature will be read extensively and students will take the lead in the discussion and debate of current controversies. Enrollment limited to 15 students. Prerequisite: Biology 200 and one semester of 300-level Biology or consent.

357 Topics in Protein Science NA

This course will study current topics in protein science using the primary research literature. We will particularly focus on these issues as they relate to function. Topics may include protein:DNA interactions, protein:protein interactions, and chaperones and their role in protein folding, protein aggregation and disease. Enrollment limited to 15 students. Prerequisite: Biology 200 and 300b or consent of instructor.

358 Developmental Genetics NA

This course will examine the structure of sex chromosomes, and how differences in sex chromosome constitution give rise to the morphological differences between males and females. The emphasis will be on the genetic and molecular basis of sex determination, using the primary research literature. Model organisms will include invertebrates such as Caenorhabditis elegans and Drosophila melanogaster and vertebrates such as placental and non-placental mammals and reptiles. Enrollment limited to 15 students. Prerequisite: Biology 301 or consent.

359 Molecular Oncology NA

This seminar will be a discussion of current concepts and literature on the molecular and cellular basis of cancer. To the physician, cancer is a broad spectrum of dozens of different diseases. On the molecular level, by contrast, the outlines of a unifying genetic explanation for neoplasia are becoming clear. The seminar will explore the basis for this genetic paradigm of cancer and what it portends for future management of the disease. Topics will include: the mechanism of neoplastic transformation; the role of proto-oncogenes in normal and cancer cells; the tumor suppressor genes; the molecular and genetic pathogenesis of cancer; molecular genetics in diagnosis and treatment of cancer. Enrollment limited to 15 students. Prerequisite: Biology 300 or consent.

360 Bacterial Pathogenesis NA

The course will begin with lectures to overview current concepts in bacterial pathogenesis. Initial readings will be taken from texts or reviews on the subject, and the rest of the course will consist of focused discussions on current research in the field and student presentations on the primary literature. Enrollment limited to 15 students. Prerequisite: Biology 200 and 300b or consent.

363 Stem Cell Biology NA

This course will develop an understanding of the molecular mechanisms that regulate stem cell self-renewal and differentiation. These issues will be examined by exploring the primary literature on topics such as hematopoietic (bone marrow) stem cells and their use as therapeutic agents. Enrollment limited to 15 students. Prerequisite: Biology 300b or consent.


402 Senior Research Tutorial in Genetics and Meiosis NA

The principles and mechanisms by which the chromosome number is reduced and segregated during the production of gametes are studied in the nematode Caenorhabditis elegans. Genetic, molecular and microscopic methods are used to isolate and examine mutant strains which fail to execute meiosis properly. Laboratory work is supplemented by readings from the current literature on meiosis and C. elegans. Prerequisite: Consent of instructor.

403 Senior Research Tutorial in Protein Folding and Design NA

The laboratory focuses on protein folding and design, with a particular emphasis on the use of proteins in nanoscience. Students will have the opportunity to apply chemical and genetic approaches to the synthesis of proteins for folding and design studies. Such proteins are characterized in the laboratory using biophysical methods (such as circular dichroism spectroscopy, analytical ultracentrifugation and atomic force microscopy). Functional and structural approaches can also be applied as necessary to answer specific questions relating to protein science. Laboratory work is supplemented with readings in the original literature. Prerequisite: Consent of instructor.

404 Senior Research Tutorial in Molecular Microbiology NA

Studies in bacterial genetics and pathogenesis. Molecular methods will be used to identify and characterize features of diarrhea-causing Escherichia coli that are absent in commensal strains. Laboratory work is supplemented by readings from current literature. Prerequisite: Consent of instructor.

407 Senior Research Tutorial in BioArchitecture NA

Studies of structure in living systems and applications in nanotechnology. Approaches employed include genetic analysis, biochemistry, biophysics, molecular biology, microscopy and imaging, bioengineering and synthetic biology. Laboratory work is supplemented by readings from the current literature. Prerequisite: Consent of instructor.

408 Senior Research Tutorial on Life and Death Decisions of Developing Lymphocytes NA

The fate of developing T cell depends on the interactions it experiences through its T cell receptor as it traffics through the thymus. Interestingly, identical interactions can have markedly different consequences depending on the T cell developmental stage. Immature T cells (thymocytes) respond to strong T cell receptor signals by dying, while their direct descendents, mature T cells, respond to the very same stimulation by proliferating. We are working to determine the molecular reasons behind this difference in responsiveness. By identifying and comparing the intracellular signals experienced by immature and mature T cells we are working to solve this developmental mystery. Laboratory work is supplemented by readings from current literature. Prerequisite: Consent of instructor.

409 Senior Research Tutorial in Molecular Neurobiology NA

The developing nervous system of vertebrate embryos rapidly becomes patterned into distinct domains of neural cell differentiation. In order to identify what genes are responsible for the establishment of this pattern, a variety of molecular screening techniques are employed. The expression pattern of these genes is then determined by in situ hybridization and their function analyzed in vivo and in vitro, using microinjection and biochemical assays. Laboratory work is supplemented by readings from the current literature. Prerequisite: Consent of instructor.

410 Senior Research Tutorial at Off-Campus Research Labs NA

Research in an area of cell, molecular, or development biology is conducted under the supervision of a member of a nearby research laboratory who has volunteered time and space for a Haverford student. All students enrolled in Biology 410 must have designated on-campus and off-campus supervisors. Prerequisite: Biology 300 and consent of both the department and the off-campus supervisor.

411 Senior Research Tutorial on The Control of Cell Shape: Molecular & Evolutionary Approaches NA

All embryos undergo a series of highly elaborate cell movements to produce their final shape and form. Understanding the molecular basis of these movements provides important insight into the underlying molecular mechanisms, and enables us to ask how changes in these mechanisms give rise to differences between organisms. Students therefore approach this subject from both molecular and evolutionary perspectives. Using the fruit fly as a model system, we are looking inside cells to ask how intricate changes to the cytoarchitecture of individual cells drive movements of entire layers of cells. We hope to further understand how these same developmental processes go awry in situations of human disease (e.g., cancer metastasis). We are also examining cell movements in a variety of insects to ask how the developmental mechanisms themselves evolve and change. Projects draw on a variety of techniques including cell and molecular biology, embryology, genetics, genomics and cell imaging. Laboratory work is supplemented by readings from the current literature. Prerequisite: Consent of instructor.

412 Senior Research Tutorial in Hematopoietic Stem Cell Biology NA

The development and maintenance of vertebrate blood is tasked to rare quiescent multipotent hematopoietic stem cells, which must balance programs for self-renewal and differentiation. This balance is determined both intrinsically through a number of different signaling pathways, including the NF-Y transcription factor, and extrinsically by the microenvironmental niche in which they reside. We employ a combination of cellular and molecular techniques to investigate these two aspects of hematopoietic stem cell regulation. Laboratory work is supplemented with readings from the current literature. Prerequisite: Consent of instructor.

413 Senior Research Tutorial in Plant Biology and Evolution NA (Cross-listed in Biochemistry)

Plants are an important interface between biology and the environment, and the study of plants' evolutionary history illuminates this interaction. This course will focus on the physiology and evolution of living and extinct plants. Techniques employed include anatomical studies of living and fossil plant tissues; imaging and quantitative investigation of plant structure; and the collection and analysis of fossil plant material. Laboratory work is supplemented by readings from the literature. Prerequisite: Consent of instructor.

480 Independent Study NA

Prerequisite: Consent of instructor.

499 Senior Department Studies NA

Participation in the department's Philip's Visitors Program; attendance at seminars by visiting speakers; senior seminar meetings, consisting of presentation and discussion of research plans and research results by students and faculty; and students' presentations of papers on contemporary developments in experimental biology. Prerequisite: Consent of department.


Multiple upper-level biology courses at Bryn Mawr can satisfy certain requirements for the Haverford Biology major, with consent of the major advisor.

Back to Top